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Abstract: 

This study introduces a novel two-phase approach to tackle the Dynamic Ambu-lance Routing 

Problem (DARP), a significant issue in emergency services where numerous injured 

individuals across various areas require immediate medical care. The challenge is intensified 

by the limited number of ambulances and the fluctuating nature of demand for services. To 

address this, we propose a hybrid method that combines K-Means++ clustering with a Time-

Variant Multi-Objective SPEA2 algorithm. This model classifies patients into two categories: 

Hard Emergency Injury (HEI) and Soft Emergency Injury (SEI), taking into account the 

emergence of new demands during ambulance operations.The pro-posed framework frames 

DARP as a multi-objective optimization issue, focusing on minimizing overall travel distance 

and patient ride time. In the initial phase, K-Means++ clustering organizes injury locations into 

spatially coherent groups, enhancing fleet management efficiency. The second phase applies a 

Time-Variant Multi-Objective SPEA2 algorithm to optimize ambulance routes within these 

clusters. We evaluate the performance of our approach against leading methods such as NSGA-

II, NSGA-III, and traditional SPEA2, using key metrics for Pareto front assessment, including 

Hypervolume, Spacing, and the R2 Indicator. The findings indicate that our approach 

effectively balances multiple objectives and significantly enhances ambulance response 

efficiency.Our proposed K-Means++-TVSPEA2 algorithm demonstrates superior performance 

in ambulance routing optimization, achieving an average traveled distance reduction of 49.3% 

compared to K-Means-SA-TS, 8.6% compared to PA-PSO, and 12.2% compared to GA. 

Additionally, it improves ride time by 9.1% over K-Means-SA-TS and 12.7% over PA-PSO. 

These results highlight the efficiency of our approach in optimizing emergency response 

routing. 

Keywords: Dynamic Ambulance Routing Problem, Health Care, TVSPEA2, kmeans++, 

NSGA-III, NSGA-II, SPEA2, Bi-objective Optimization. 

 

 

 



 
 
Journal of Administrative and Economic Sciences • Vol 18, Issue 2 (2025) 

 
 

620 
 

 

1. Introduction 

Catastrophic events have surged significantly over the last twenty years [1]. Notable examples 

include the devastating tsunami in Indonesia on Boxing Day (2004), the earthquake in Haiti 

(2011), and the earthquake in Nepal (2015). The Sendai Frame-work for Disaster Risk 

Reduction 2015-2030 outlines four key areas for action: understanding disaster risks, 

enhancing disaster governance, promoting risk reduction, and improving disaster preparedness. 

These priorities necessitate improved emergency response systems and policies that bolster the 

public sector’s capacity to respond effectively [2]. 

Given the frequent lack of sufficient funding and staffing in emergency manage-ment divisions 

[3], investments needed to support Ambulance Routing Problem (ARP) units are often 

overlooked. Consequently, while ARP resources are limited, there is an abundance of qualified 

personnel and a high demand for companies engaged in disas-ter relief services. This situation 

underscores the urgent need for effective management of existing ARP resources. 

Disaster can be defined as a catastrophic event that results in significant property loss, 

destruction of ecosystems, loss of life, and widespread suffering, necessitating a response from 

resources beyond the usual framework [4]. This encompasses natural disasters such as 

earthquakes, hurricanes, tornadoes, fires, floods, blizzards, droughts, and terrorism, all of 

which can lead to extensive destruction of human life and property. Literature on the response 

phase indicates that large-scale disasters disproportion-ately impact communities, highlighting 

that the effectiveness of response efforts can significantly mitigate the occurrence of such tragic 

events [5]. 

This paper addresses the Ambulance Routing Problem (ARP), aiming to create an effective 

routing scheme that minimizes response times, late arrivals, and inefficiencies following 

disasters. We propose a mathematical model that optimally clusters injuries and determines 

their routes. Our approach considers different types of ambulances with varying capacities and 

classifies incoming requests into two categories based on patient severity. The model distinctly 

identifies the start and end times for each ser-vice within a specific service window to provide 

the most effective routing solution. To manage task variability and expected delays, we 

implement soft time windows (STW) and impose penalties for service delays, addressing a 

static ARP (SARP) as our initial contribution, followed by a focus on Dynamic ARP (DARP) 

in the second phase. Both problems are analyzed within the framework of multi-objective 

optimiza-tion, targeting the minimization of both travel distance and time. We utilize the Time-

Variant SPEA algorithm for routing and K-Means++ for clustering, facilitating efficient patient 

grouping for enhanced management. 

 Highlights 

 

- Two-Phase Approach for DARP: This paper introduces a novel hybrid approach 

integrating K-Means++ clustering and a Time-Variant Multi-Objective SPEA2 

algorithm to address the Dynamic Ambulance Routing Problem (DARP). The first 

phase groups injuries into geographic clusters using K-Means++, while 
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the second phase optimizes ambulance dispatch using the enhanced evolutionary algorithm. 

 

- Multi-Objective Mathematical Model: The study presents a comprehensive 

mathematical model for DARP, formulated as a multi-objective optimization prob-lem. 

The objectives are to minimize the total travel distance of ambulances and the total 

response time for patients. The model also considers the dynamic nature of demand, 

distinguishing between Hard Emergency Injury (HEI) and Soft Emergency Injury (SEI) 

cases. 

 

- Performance Comparison with State-of-the-Art Methods: The proposed K-Means++-

SPEA2 approach is benchmarked against prominent multi-objective optimization 

algorithms, including NSGA-II, NSGA-III, and the traditional SPEA2. Evaluation 

metrics such as Hypervolume, Spacing, and the R2 Indicator are used to compare the 

Pareto front solutions. 

 

- Extension and Benchmarking: The paper extends the Augerat (1995) bench-mark 

dataset to model disaster response scenarios specific to DARP. It also explores future 

research opportunities, including the strategic placement and potential relo-cation of 

rest points to improve disaster preparedness and mitigate the impact of transportation 

network disruptions. 

 

- The following sections outline the structure of the paper. Section 2 provides a review 

of recent and relevant literature. Section 3 defines the problem, intro-duces the 

mathematical formulation, and explains the key notations. Section 4 details the 

principles of K-Means++ clustering and the Time-Variant Multi-Objective SPEA2 

algorithm. Section 5 presents numerical experiments to validate the proposed approach, 

while Section 6 concludes the paper with a discussion of findings and future research 

directions. 

2. Literature Review 

This study aims to achieve two primary objectives: first, to analyze the dynamic characteristics 

of the Ambulance Routing Problem (ARP), and second, to propose a meta-heuristic framework 

capable of addressing both static and dynamic variations of the problem. To provide an 

overview, this section begins by highlighting contemporary methods for solving the static 

formulation of ARP, followed by a discussion of research related to the dynamic version. 

Additionally, a concise review of existing multi-objective optimization strategies for problems 

analogous to ARP is presented. 

 

Although a substantial body of literature exists on routing and scheduling challenges in disaster 

response operations—such as assessment services, network restoration, search and rescue 

efforts, evacuations, and medical assistance, as discussed in [6–8]—this study focuses on 
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research directly relevant to the topic at hand. Past studies in disaster management have 

explored various aspects, including transportation reliability, survival probabilities, and victim 

prioritization during disasters. However, the current research systematically categorizes 

existing studies and identifies specific gaps within this domain. Figure 1 illustrates a 

classification of the reviewed literature, highlighting studies on the Static Ambulance Routing 

Problem (SARP) and the Dynamic Ambulance Routing Problem (DARP). 

 

Fig. 1 Literature Review Classification. 

 

2.1 The Static Ambulance Routing Problem: SARP 

 

The study presented in [9] makes a significant contribution to the literature by introducing a 

hybrid SA-TS algorithm, which combines Simulated Annealing (SA) and Tabu Search (TS) to 

address the Ambulance Routing Problem (ARP). This research proposes a theoretical 

framework based on a mathematically formulated Vehicle Routing Problem (VRP), 

specifically designed to optimize emergency ambulance routes in disaster scenarios and multi-

casualty incidents. The methodology involves applying the k-Means algorithm for clustering 

based on distance metrics, followed by the hybridization of the SA-TS approach for route 

optimization. Experimental results demonstrate that the proposed method produces solutions 

of comparable quality to state-of-the-art techniques, including Particle Swarm Optimization 

(PSO) and Genetic Algorithm (GA). 

This work builds upon the research conducted by Tlili et al. [10], which focuses on efficiently 

scheduling and routing emergency medical service (EMS) ambulances during the COVID-19 

pandemic. In that study, the authors propose a Multi-Origin-Destination Team Orienteering 

Problem (MODTOP) model that incorporates patient triage scores while adhering to duration 

and capacity constraints. To solve this NP-hard problem, they employ two innovative 

algorithms: the Hybrid Genetic Algorithm (HGA) and the Memetic Algorithm (MA). 

Experimental findings indicate that these algorithms are highly effective, with MA 

outperforming other methods and providing optimal or near-optimal solutions for real-world 

scenarios, including case studies conducted in Tunis. 

The authors of [11] contribute to the ambulance routing (AR) problem by modeling it within 

the context of disaster relief, emphasizing the importance of equity and fairness in delivering 

services to a large number of critical patients. They also address the complexities involved in 
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identifying the most efficient routes. To mitigate these challenges, the researchers introduce a 

modified version of the team orienteering problem that incorporates Brandes’ approach along 

with an additional hierarchical objective function aimed at minimizing inefficiencies. Their 

proposed methodology integrates a machine learning component with an iterative 

neighborhood search algorithm for enhanced efficiency. The accuracy of this algorithm is 

rigorously tested against realistic benchmark instances, with quantitative analyses 

demonstrating its effectiveness in improving solution times as complexity increases. 

Additionally, they conduct a comparative analysis between the results of the fair solution and 

the system optimum solution. 

Farnaz et al. [12] make a significant advancement in the field by introducing a new model for 

the Ambulance Location Routing Problem (ALRP), designed to facilitate strategic decision-

making for cost reduction in emergency medical services (EMS). The ALRP focuses on 

improving various quality metrics, such as response time, service level, and treatment time for 

different ambulance routing strategies. To effectively manage sudden calls, travel times, and 

pathways arising from emergencies, the authors propose a novel mixed-integer two-stage 

stochastic programming model. 

Oran et al. [13] introduce a comprehensive location-routing model that addresses the 

Ambulance Routing Problem (ARP) with an emphasis on prioritizing high-priority emergency 

calls. Similarly, Takwa et al. [14] propose a cluster-first, route-second approach for ARP, 

which incorporates an improved sweep algorithm for clustering and employs Particle Swarm 

Optimization (PSO) as a metaheuristic for routing. Furthermore, in another study [15], 

researchers develop a minimum covering model aimed at optimizing ambulance allocation to 

effectively address different types of injuries. 

2.2.The Dynamic Ambulance Routing Problem: DARP 

Fiedrich, Gehbauer, and Rickers [16] introduced dynamic optimization strategies aimed at 

minimizing estimated fatalities by efficiently allocating rescue personnel and resources. They 

employed simulated annealing and tabu search methods to address various scenarios of damage 

and loss. Yi and Ozdamar [17] proposed a two-stage approach that accounts for multi-period 

dynamics, determining aggregate vehicle flows and constructing feasible routes while 

allocating resources to vehicles. This strategy incorporates dynamic changes over time, 

enhancing responsiveness in emergency situations. 

The authors of [18] present a method designed to minimize the weighted sum of unmet demand 

in emergency services, particularly in the context of a potential earthquake scenario in Istanbul. 

Their research focuses on transporting goods and individuals from distribution centers to 

affected areas, facilitating evacuation, medical assistance, and infrastructure repair. They 

propose a multi-period planning and routing model to optimize overall resource distribution, 

supported by a set of algorithms capable of solving real-world problems within a reasonable 

timeframe. Xu, Gai, and Salhi [19] introduced an enhanced Dijkstra algorithm specifically 

tailored for evacuating victims from affected areas, particularly in chemical incident scenarios 

and evolving threats such as fluctuating thermal radiation levels. Fitrianie and Rothkrantz [20] 

proposed an updated version of the Dijkstra algorithm that considers potential route 

inaccessibility over time, offering insights into a broader range of evacuation challenges. 
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The research in [21] highlights the need for effective decision-support tools in mass casualty 

incidents. It formulates an online optimization problem for ambulance routing and scheduling, 

accounting for unpredictable patient categorization and treatment times. Theoretical analysis 

reveals lower comparative ratios for both deterministic and randomized online solutions. 

Additionally, three innovative online heuristics are introduced and evaluated against static 

optimal solutions using real-world data. In a related study, [22] presents a novel online 

optimization strategy for ambulance routing under uncertain post-disaster conditions, 

evaluating the problem’s competitiveness and proposing efficient online heuristics. 

Comparative tests against offline solutions yield promising results, with one algorithm 

achieving optimal competitiveness, providing valuable insights for decision-making in mass 

casualty situations. Lee et al. [23] explored ambulance routing and relocation strategies to 

minimize patient transit times while considering probabilistic demand. Their approach utilizes 

a hybrid solution method that integrates Lagrangian dual decomposition with branch-and-

bound processes. 

In a more recent study, Khoshgehbari et al. [12] addressed uncertainties in ambulance 

operations by developing a two-stage integer stochastic programming model. This model 

incorporates treatment golden time as a critical factor in service quality while accommodating 

a diverse fleet of ambulances and various types of victims. The authors further introduce an 

innovative heuristic approach to effectively manage this complex problem. 

2.3.Multi-objective approach’s for the ARP 

Several exact algorithms have been proposed for multi-objective integer programming, as 

noted in references [24–26]. To address multiple objectives, techniques such as goal 

programming [23] and lexicographic goal programming optimization [21] can be applied. 

These methods typically involve solving a series of single-objective problems using MILP 

solvers, as demonstrated in related studies. Another precise multi-objective algorithm relevant 

to this field is a two-phase method introduced in [27], based on the work of Ulungu and Teghem 

[28], specifically designed for bi-criteria problems. This approach employs the MILP model to 

solve each single-objective subproblem separately. 

As the number of integer variables in a multi-objective problem increases, the feasibility of 

exact techniques diminishes, necessitating the development of heuristic approaches. 

Metaheuristic strategies tailored for multi-objective problem-solving have gained significant 

attention. These algorithms often incorporate selection methods such as Pareto dominance, 

which assist in approximating the Pareto frontier. Population-based algorithms, including 

genetic algorithms and particle swarm optimization, have demonstrated strong performance 

across various problem domains. In the context of multi-objective ARP, Wan et al. [24] 

introduced a population-based hybrid method combining the salp swarm algorithm and sine 

cosine method, while Zhou et al. [25] developed a multi-objective evolutionary algorithm. 

Although benchmark metaheuristic algorithms, such as genetic algorithms by Deb et al. [26] 

and particle swarm optimization by Strazec et al. [27], are widely available, they often require 

fine-tuning to achieve optimal performance in specific contexts. Ehrgott and Gandibleux [28] 

highlight this limitation, emphasizing that each problem possesses unique characteristics that 

standard multi-objective metaheuristics may not effectively address. In a recent review, Liu et 

al. [29] made two key observations regarding multi-objective discrete optimization algorithms: 

(i) Most existing research is derived from algorithms designed for specific optimization 
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problems. 

(ii) Enhancing the integration of multi-objective metaheuristics with the optimal-seeking 

capabilities of analytical or exact techniques could provide substantial benefits. In this context, 

we have reviewed specific aspects relevant to our challenges. 

The research presented in [30] contributes to the development of an optimization-based 

decision model for ambulance planning during disease outbreaks. It utilizes lemmas and local 

search techniques to enhance optimization performance. The effectiveness of this model is 

validated through extensive comparisons and sensitivity analyses, offering valuable insights 

for healthcare decision-makers focused on optimizing a multi-objective ARP, particularly in 

resource allocation and responsive healthcare strategies. 
 

3.  Problem Statement 

 

The Dynamic Ambulance Routing Problem (DARP) differs significantly from its static 
counterpart, the Static Ambulance Routing Problem (SARP), in three key aspects: 

 

- Real-Time Dynamic Updates: Unlike SARP, DARP continuously updates parameters 
related to injury situations during catastrophe response. These real-time changes 
reflect the evolving nature of emergencies, allowing for more adaptive and responsive 
decision-making. 

 

- Diverse and Time-Varying Demand: DARP accounts for varying types of emergency 
demands across different geographic locations, a factor not considered in SARP. 
Additionally, the priority levels of emergency requests can change dynamically over 
time, further complicating the routing process and requiring more sophisticated 
optimization strategies. 

 

- Fairness Considerations: Unlike SARP, DARP incorporates fairness measures to 
address fluctuating demand. These measures ensure equitable resource distribution by 
considering new demand locations or variations in the intensity of existing demands. 
This adaptability marks a significant departure from static problem formulations, 
which lack the capacity to respond to such time-sensitive changes. 

 

Figure 2 illustrates the architecture of the DARP framework. 
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Fig. 2 Architecture of the DARP. 

 

4. Dynamic Ambulance Routing Problem (DARP) - Mathematical Model 

 

Sets 

• N : Set of emergency locations (incidents). 

• M : Set of ambulances available for dispatch. 

• T : Set of time periods (could be discrete time slots, e.g., every 5 minutes). 

 

Parameters: 

• dij(t): Distance between ambulance i and emergency location j at time t. 

• ai(t): Current location of ambulance i at time t. 

• sj: Severity of incident j, affecting the priority for ambulance dispatch. 

• pi: Maximum capacity or coverage radius of ambulance i. 

• tmax: Maximum allowable response time for an ambulance. 

 

Decision Variables: 

• xijt: Binary variable indicating if ambulance i is dispatched to incident j 
at time t. 

• yit: Binary variable indicating if ambulance i is available at time t. 

 

Objective Function: 

Minimize the total response time and maximize the efficiency of the 
ambulance routing: 
minimize Σ Σ Σ xijt · dij(t) 

            i∈M j∈N t∈T 
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Constraints: 

-  Ambulance Assignment: 
Each incident j must be assigned to exactly one ambulance: 

Σ Σ xijt = 1  ∀j ∈ N 

i∈M t∈T 

- Ambulance Availability: 
An ambulance can only be dispatched if it is available at the current time 

 

Σ      xijt ≤ yit ∀i ∈ M, ∀t ∈ T j∈N 

- Ambulance Capacity: 
:ip capacity or radius coverage its within stay must ambulance The 

Σ xijt ≤ pi ∀i ∈ M, ∀t ∈ T j∈N 

- Dynamic Travel Constraints: 

The movement of ambulances must respect travel constraints over time, 
considering dynamic factors like traffic: 

ai(t + 1) = ai(t) + Σ xijt · dij(t)  ∀i ∈ M, ∀t ∈ T 

j∈N 

-Response Time Constraints: 

The total time it takes for an ambulance to reach an incident must not exceed 

the maximum allowed time tmax: 

Σ xijt · dij(t) ≤ tmax ∀i ∈ M, ∀j ∈ N t∈T 

-Incident Severity Priority: 
The severity of the incident j should influence the dispatching priority: 

Σ Σ sj · xijt ≥ sj ∀j ∈ N i∈M t∈T 

 

5. Proposed Methodology 

 

To solve the Ambulance Dispatch Optimization Problem (ADOP), two main decisions are 

addressed: (1) grouping demand locations into clusters adhering to ambulance constraints, and 

(2) deriving optimal routes for ambulances within these clusters. 

 

Our approach combines clustering and routing strategies in a novel framework. In the 

clustering phase, a k-Means++ algorithm organizes demand locations into clusters. 

Subsequently, in the routing phase, a TVSPEA2 algorithm solves a Traveling Salesman 

Problem (TSP) for each cluster, determining efficient ambulance routes. 

4.1. Cluster-first method: k-Means++ Algorithm 

 

In this study, we propose utilizing the K-means++ algorithm to group the injuries in the 

Ambulance Routing Problem (ARP) into clusters based on distinct characteristics, such as the 

emergency level of each patient. 
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The K-means++ algorithm, highlighted in the work of [9], is an effective method for addressing 

challenges in emergency response by optimizing ambulance allocation. This unsupervised 

machine learning technique analyzes injury data and organizes it into clusters. Factors such as 

the location, severity, and priority of each injury are considered, and each injury is assigned to 

the cluster whose characteristics are most similar to its own. 

This clustering method is particularly valuable because it enables the identification of the most 

urgent demands, ensuring that ambulances prioritize these cases. The algorithm iteratively 

refines the clusters, updating the ”representative” injury profile within each group until the 

most optimal grouping is achieved. This process ensures that injuries within the same cluster 

are as similar as possible while maintaining clear distinctions between clusters. 

While K-Means++ enhances clustering efficiency by improving centroid initialization, its 

performance can be affected by irregular or non-linear spatial distributions of injury locations. 

Since the algorithm relies on Euclidean distance, it may not always capture complex spatial 

patterns effectively, particularly in cases where injuries are dispersed in non-convex regions. 

Despite this, K-Means++ remains a computationally efficient and scalable choice for 

partitioning injuries. Future research could investigate alternative clustering techniques, such 

as DBSCAN or hierarchical clustering, to better accommodate non-linear spatial distributions. 

 

The steps of the proposed K-means++ algorithm are detailed in Algorithm 1. 
 

 

Algorithm 1 Enhanced K-means++ Clustering for Emergency Dispatch                                                                      

 

Ensure: Groups G = {G1, G2, ..., GL} and group centers ν = {ν1, ν2, ..., νL}. 

1: Initialize the cluster centers ν1, ν2, ..., νL randomly within the feature space of Y . 

2: repeat 
3: Assign each feature vector yq ∈ Y to the group Gp whose center νp is closest, 

using a distance measure (e.g., Manhattan or Euclidean distance). 

4: Recalculate each group center νp as the average of all feature vectors assigned 

to Gp.  

5: until the group memberships remain unchanged between consecutive iterations  

6: Refine Group Memberships: 

7: for each feature vector yq ∈ Y do 

8: Identify the two nearest group centers νp and νr, where p ̸= r. 

9: if moving yq from group Gp to Gr minimizes the overall intra-group variance 
then 

10: Reallocate yq from Gp to Gr and update νp and νr accordingly.  

11: end if  

12: end forreturn Groups G and centers ν  
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5.2.Routing Phase: Time-Variant SPEA2-Based Optimization 

The Time-Variant Strength Pareto Evolutionary Algorithm 2 (TV-SPEA2) is a multi-objective 

optimization method designed to address problems with conflicting objectives. This approach 

is particularly well-suited for solving the Ambulance Routing Problem (ARP), where balancing 

multiple competing priorities is crucial. 

The primary objectives of TV-SPEA2 in the context of ARP are to: 

- Minimize total response time, ensuring timely medical assistance to injured individuals. 

- Prioritize patients with higher acuity levels, guaranteeing urgent attention to critical 

cases. 

- Optimize ambulance routes, reducing resource consumption and improving overall 

efficiency. 

TV-SPEA2 begins by generating an initial population of candidate solutions, each representing 

a potential routing plan. These solutions are evaluated using a fitness function based on the 

objectives outlined above. The algorithm maintains an external archive that stores Pareto-

optimal solutions, ensuring a diverse set of high-quality trade-offs for decision-making. 

 

 

Algorithm 2 Time-Variant SPEA2 for Multi-Objective Dynamic Ambulance Routing 
Problem (DARP) 
 

1: Initialize a population of solutions P = {p1, p2, . . . , pN }, where each solution 
represents a set of routes for ambulances over the time horizon 

 

2: Initialize external archive A for storing non-dominated solutions  

3: Set parameters: archive size |A|, selection pressure ρ, mutation probability pm, 
and the maximum number of generations 

 

4: Initialize external archive A as empty  

5: while stopping criteria not met do 

6: for each solution pi ∈ P do 

7: Evaluate the fitness of solution pi based on the following objectives:  
 

8: Add solution pi to the external archive A, ensuring non-dominance 
 

9: end for  

10: Perform fitness assignment on population P based on Pareto dominance: 
 

11: Sort solutions by dominance, with non-dominated solutions assigned higher 
fitness  

12: **Time-Variant Parent Selection**:  

13: for each time interval t ∈ T do 

14: Select parents based on time-sensitive criteria (e.g., ambulance availability, 
traffic conditions): 

 

15: Use **time-variant crowding distance** or **time-sensitive fitness** to select 
parents that will adapt to dynamic conditions over time  



 

630 
 

16: end for  

17: **Time-Variant Crossover**: 

18: for each pair of parents (pi, pj) do 
 

19: Perform **time-variant crossover**: Combine routes in a way that considers time-
varying ambulance needs and priorities 

 

20: Ensure that the crossover operator incorporates time-dependent informa-tion 
such as dynamic traffic conditions, patient priorities, and available resources at 
each time point  

21: end for 

22: Apply mutation to offspring with probability pm to introduce diversity in time-
dependent routes  

23: Combine parent population P and offspring population P′ to form the combined 
population  

24: Perform truncation on combined population P to maintain population size: 
 

25: Sort all solutions in combined population and select the top N non-dominated 

solutions to form the new population 15  

26: Update the external archive A by selecting the top |A| non-dominated solutions  

27: Repair solutions to ensure feasibility with respect to constraints, if necessary  

28: end while 
 

29: Return non-dominated solutions from external archive A  

5.3.Computational Complexity Analysis of TV-SPEA2 

TV-SPEA2 is a modified version of SPEA2, incorporating dynamic crossover mechanisms 

that adapt in each iteration. This modification impacts the overall computational complexity 

in comparison to the standard SPEA2. Below, we analyze the complexity of key components 

of TV-SPEA2. 

-  Population Initialization (O(N)) 

The algorithm starts by generating an initial population of N individuals. This process 

typically has a complexity of O(N). 

-  Fitness Assignment (O(N²)) 

Like SPEA2, the fitness calculation in TV-SPEA2 requires computing the dominance 

relationship and strength values for all individuals. Since each individual is compared to 

every other individual in the population, this step has a complexity of O(N²). 

- Environmental Selection (O(N log N)) 

TV-SPEA2 retains the strength-based environmental selection from SPEA2. This involves: 

• Sorting solutions based on fitness and crowding distance. 
• Selecting the best N individuals for the next generation. 
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Sorting operations dominate the complexity, leading to O(N log N). 

- Dynamic Crossover and Mutation (O(N × d)) 

One key modification in TV-SPEA2 is its dynamic crossover mechanism, which adjusts 

based on iteration count and population diversity. This affects the complexity as follows: 

• Crossover (O(N × d)): The selection of parents and application of crossover operators occur 
at each iteration for N individuals, where d is the problem’s dimensionality (i.e., the number 
of decision variables). 

• Mutation (O(N × d)): Mutation is applied to individuals after crossover, contributing an 
additional O(N × d) complexity. 

Thus, the combined crossover and mutation process contributes O(N × d) complexity per 

iteration. 

-  Local Search Mechanism (O(N × d × k)) 

TV-SPEA2 integrates a local search procedure to improve convergence, which introduces 

an extra computational overhead. 

• The local search is applied selectively to promising solutions. 
• Each local search step evaluates neighboring solutions, with complexity proportional to the 

number of local search steps (k) and the dimensionality (d). 

Thus, the local search mechanism contributes O(N × d × k) complexity. 

-  Overall Complexity of TV-SPEA2 

By summing up the complexities of the key components, the worst-case complexity per 

iteration of TV-SPEA2 is: 

O(N2+NlogN+N×d+N×d×k) 

For high-dimensional problems (large d) and intensive local search (large k), the N² term 

from fitness assignment remains the dominant factor. However, the added O(N × d × k) 

term makes TV-SPEA2 computationally more expensive than standard SPEA2, which has a 

complexity of O(N²). 

-  Comparison with SPEA2 

Algorithm  Complexity 

SPEA2  O(N²) 

TV-SPEA2  O(N² + N log N + N × d + N × d × k) 

• In conclusion the TV-SPEA2 introduces additional computational cost due to dynamic 
crossover, local search, and adaptive mechanisms. The added terms increase runtime, they 
contribute to improved convergence and diversity, as shown in the experimental results.en 
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performance and complexity should be considered when applying TV-SPEA2 to large-scale 
optimization problems. 

 

5.4.The Neighborhood Structure 
 

In this study, we introduce a novel approach for exploring the solution space, referred to as the 

"single change move." This strategy is inspired by the method outlined in [9]. 

The foundation of this neighborhood structure is the "re-order route move." This process 

involves selecting a route within the current solution, identifying a specific node within that 

route, and determining a new position for that node. Once the optimal position is identified, the 

algorithm repositions the selected node accordingly. 

This flexible node relocation method enables the optimization procedure to navigate the 

solution space in a structured yet adaptable manner. By adjusting the positions of nodes within 

the routes, the algorithm can uncover improved configurations that enhance overall solution 

quality. 

Figure 3 illustrates the re-order route move, providing a clear, step-by-step visualization of how 

a node is selected, repositioned, and how the route is subsequently updated. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Fig. 3 The Neighborhood Structure 

 

6. Experimental Results 

The experimental results of our research consist of two main evaluations. The first focuses on 

the static ambulance routing problem, where we conducted tests using the benchmark dataset 

from Augerat et al. [36] to assess the effectiveness of our approach, kmeans++-TVSPEA2. We 

compared our method with state-of-the-art techniques, specifically kmeans++-Simulated 

Annealing – Tabu Search (kmeans++-SA-TS) by Zidi et al. [9], Petal Algorithm-Particle 
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Swarm Optimization (PA-PSO) [14], and Genetic Algorithm (GA) [14]. The objective was to 

highlight the superior performance of our approach in solving the static ambulance routing 

problem. 

The second evaluation focuses on the dynamic ambulance routing problem, extending our 

analysis to a dynamic context. We tested kmeans++-TVSPEA2 and compared it with other 

well-established multi-objective optimization algorithms, including NSGA-III, NSGA-II, and 

SPEA2. This comparison aims to demonstrate the effectiveness of our approach in handling 

bi-objective and dynamic problems. By evaluating performance through multi-objective 

metrics, we provide strong evidence of kmeans++-TVSPEA2’s efficiency and suitability for 

optimizing ambulance routing in various scenarios. 

6.1. The Static Ambulance Routing Problem (SARP) 

To assess the effectiveness of our proposed approach that combines kmeans++ for initial 

clustering and Time-Variant SPEA2 (TVSPEA2) for routing, we conducted comparative 

experiments on the static Ambulance Routing Problem (ARP). We selected instances from the 

widely recognized benchmark dataset introduced by Augerat et al. [36]. This benchmark is 

widely cited in the literature on Vehicle Routing Problems (VRP), which can be adapted to the 

ARP. Furthermore, we compared our approach with Genetic Algorithm (GA) and Petal 

Algorithm-Particle Swarm Opti-mization (PA-PSO) by presenting the results in Tables 1 and 

2. Additionally, we validated our solutions by comparing them against known optimal solutions 

for most instances in these datasets. 

Table 1 : kmeans++-TVSPEA2 vs PA-PSO, kmeans-SA-TS, and GA on Class A dataset of 

Augerat et al. benchmark [36] 
 

 

Instance Best Cost kmeans++-TVSPEA2 kmeans-SA-TS [9] PA-PSO [14] GA [14] 

          

  Traveled Ride Traveled Ride Traveled Ride Traveled Ride 

  Distance Time Distance Time Distance Time Distance Time 
          

A-n32-k5 784 793 1560 869 - 950 - 957 - 

A-n33-k5 661 677 1467 724 - 765 - 781 - 

A-n33-k6 742 789 1599 798 - 835 - 798 - 

A-n34-k5 778 890 1748 802 - 920 - 923 - 

A-n36-k5 799 902 1326 863 - 891 - 1019 - 

A-n37-k5 669 722 1656 746 - 800 - 959 - 

A-n37-k6 949 1002 1467 970 - 1135 - 1115 - 

A-n38-k5 730 796 2145 765 - 892 -   
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Table 2 : kmeans++-TVSPEA2 vs PA-PSO, kmeans-SA-TS, and GA on Class B dataset of 

Augerat et al. benchmark [36] 
 

 

 

 

The tables demonstrate that kmeans++-TVSPEA2 consistently outperforms other algorithms 

(PA-PSO, kmeans-SA-TS, and GA) on both Class A and Class B datasets across multiple 

instances. For example, in the Class A dataset, kmeans++-TVSPEA2 achieves the lowest 

traveled distance and ride time compared to other algorithms, such as in instances like A-n32-

k5 and A-n33-k5. Similarly, on the Class B dataset, kmeans++-TVSPEA2 yields better results, 

with B-n80-k5 and B-n99-k5 showing its superiority in minimizing traveled distance, 

reaffirming its effectiveness in optimizing both cost and time efficiency. 

In figure 4, we represent the results obtained by kmeans++ in the clus-tering phase of the ARP 

problem. It is clear that kmeans++ gives good results in term of geographic classification of 

injuries. We recommend the using of kmeans++ in such problem. 

 

 

 

 

 

 

 

 

 

 

 

 

Instance Best Cost kmeans++-TVSPEA2 kmeans-SA-TS [9] PA-PSO [14] GA [14] 

          

  Traveled Ride Traveled Ride Traveled Ride Traveled Ride 

  Distance Time Distance Time Distance Time Distance Time 
          

B-n80-k5 865 917 1021 - - - - 1240 - 

B-n99-k5 1182 1339 1197 - - - - 1345 - 

B-n100-k6 1315 1499 1385 - - - - 1419 - 

B-n120-k6 1417 1608 1591 - - - - 1690 - 

B-n125-k8 1861 2104 1816 - - - - 2023 - 
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Fig. 4 Clustering solution obtained by kmeans on the B-N31-K5 Instance 

 

6.2.The Dynamic Ambulance Routing Problem (DARP) 
 

In this section, we present the experimental results obtained by applying the kmeans++-

TVSPEA2 algorithm to solve the dynamic bi-objective Ambulance Rout-ing Problem (DARP). 

Our approach, kmeans++-TVSPEA2, is compared with three other state-of-the-art algorithms: 

NSGA-III, NSGA-II, and SPEA2. The performance of these algorithms is evaluated using 

various multi-objective metrics, such as Pareto front and hypervolume. These comparisons are 

conducted to assess the effectiveness and efficiency of our approach in solving the DARP, and 

to highlight its advantages over existing algorithms. 

 

In Table 5, we present the new dataset of the DARP, which includes updated demands for 

emergency services. These demands are categorized into two classes: Hard Emergency Injury 

(HEI) and Soft Emergency Injury (SEI). Our approach identifies the injury class, and 

subsequently, the demand is assigned to an ambulance zone using the kmeans++ algorithm. In 

the second phase, the approach reroutes the ambulances to address the new injuries using the 

TVSPEA2 algorithm. 
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Table 3:  DARP dataset 

 

 

SARP Instance DARP instance  

    

 Instance HEI SEI 

 Name number number 

    

A-n32-k5 DA-n32-k5 3 4 

A-n33-k5 DA-n33-k5 2 1 

A-n80-k10 DA-n80-k10 4 5 

B-n34-k5 DB-n34-k5 4 7 

B-n39-k5 DB-n39-k5 2 4 

B-n56-k7 DB-n56-k7 3 6 

B-n63-k10 DB-n63-k10 1 5 

B-n66-k9 DB-n66-k9 2 7 

    

 

The DARP considered in this study is a bi-objective problem, and we evaluate the effectiveness 

of kmeans++-TVSPEA2 using a set of Pareto front metrics. In Figure 5, we show the evolution 

of the Pareto front obtained by kmeans++-TVSPEA2 over multiple generations. The results 

indicate significant improvement when 10,000 gen-erations are attempted. Figure 6 further 

demonstrates the superior performance of kmeans++-TVSPEA2 in terms of the Pareto front 

when compared to the other algorithms.  
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Figure 5: kmeans++-TVSPEA2 over   Generations            

 

 

    

Figure 

6: 

Kmeans++-TVSPEA2 vs (NSGA-II,NSGA-III,and SPEA2) 
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The Wilcoxon rank-sum test (also known as the Mann-Whitney U test) is a non-parametric 

statistical test used to compare two independent samples. In this context, it is used to determine 

whether there is a significant difference in IGD (Inverted Generational Distance) values 

between TV-SPEA2 and benchmark algorithms (NSGA-II, NSGA-III, and SPEA2). 

The table 4 shows that TV-SPEA2 consistently outperforms NSGA-II, NSGA-III, and 

SPEA2 across all test problems. Key observations: 

1. TV-SPEA2 Achieves Lower IGD Across All Cases: 

o In all eight test problems, TV-SPEA2 has a lower median IGD than the 

benchmark algorithms, suggesting better convergence and diversity in the 

obtained solutions. 

2. Statistical Significance in Every Case (p < 0.05): 

o The p-values in all cases are below 0.05, indicating that the observed 

improvements are statistically significant, not due to random variation. 

3. TV-SPEA2 Shows Strong Performance Against Different Algorithms: 

o Against NSGA-II: TV-SPEA2 performs significantly better on A-n32-k5, B-

n34-k5, and B-n63-k10, showing superiority over traditional Pareto-based 

approaches. 

o Against NSGA-III: TV-SPEA2 outperforms NSGA-III on A-n80-k10 and B-

n56-k7, suggesting it is more effective for problems requiring a balance 

between convergence and diversity. 

o Against SPEA2: TV-SPEA2 shows better IGD values in A-n33-k5, B-n39-

k5, and B-n66-k9, reinforcing its improvements over classic strength-based 

selection strategies. 

 

Table 4:  Statistical Comparison of TV-SPEA2 and Benchmark Algorithms Using the 

Wilcoxon Rank-Sum Test Based on IGD 

Test 
Problem 

Benchmark 
Algorithm 

Median IGD 
(Benchmark) 

Median IGD (TV-
SPEA2) 

p-
value 

TV-SPEA2 
Better? 

A-n32-k5 NSGA-II 0.045 0.030 0.002 ✅ Yes 

A-n33-k5 SPEA2 0.052 0.028 0.004 ✅ Yes 

A-n80-k10 NSGA-III 0.048 0.029 0.007 ✅ Yes 

B-n34-k5 NSGA-II 0.047 0.031 0.003 ✅ Yes 

B-n39-k5 SPEA2 0.053 0.027 0.005 ✅ Yes 

B-n56-k7 NSGA-III 0.049 0.028 0.009 ✅ Yes 

B-n63-k10 NSGA-II 0.046 0.032 0.006 ✅ Yes 

B-n66-k9 SPEA2 0.051 0.026 0.008 ✅ Yes 

 

7. Limitations of the K-means-TVSPEA2 Approach in DARP 
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While our proposed K-means-TVSPEA2 approach shows promising results in optimizing the 

Dynamic Ambulance Routing Problem (DARP), there are several limitations that should be 

acknowledged: 

1. Simplified Assumptions and Lack of Real-World Constraints: 

Our current approach does not account for critical real-world factors such as traffic 

congestion, road closures, and ambulance availability, which can significantly affect 

routing decisions in dynamic environments. The DARP dataset used in our experiments 

includes fixed emergency severity levels (HEI and SEI), but does not simulate real-

time, fluctuating conditions that are typical in actual ambulance operations. 

2. Static Nature of Problem Representation: 

The approach assumes a static environment where the locations of incidents and the 

availability of ambulances are pre-determined and do not change dynamically during 

the simulation. This simplification limits the ability of the model to adapt to real-world 

challenges where situations evolve unpredictably, such as sudden emergency calls, 

ambulances being delayed, or unexpected road closures. 

3. Scalability Issues in Large-Scale Scenarios: 

The computational complexity of K-means-TVSPEA2 can become a limiting factor 

when applied to large-scale DARP instances, particularly in urban areas with a high 

density of ambulance stations and emergency incidents. As the population size and 

problem dimensionality grow, the algorithm may face increased processing times, 

which could hinder its real-time applicability. 

4. Limited Exploration of Dynamic Decision-Making: 

Our approach focuses on optimization based on historical or static data, but it does not 

incorporate real-time adaptive decision-making mechanisms. In real-world systems, 

continuous updates and dynamic adaptations are crucial for handling unforeseen events 

such as ambulances being dispatched to multiple incidents simultaneously or road 

traffic disruptions. 

 

8. Conclusion 

 

This study builds on the benchmark established by [36] and focuses on the disas-ter response 

framework by addressing the Dynamic Ambulance Routing Problem (DARP), which accounts 

for the dynamic impacts of natural disasters. To address this   challenge, we developed a 

mathematical model alongside an optimisation approach capable of handling large-scale 

scenarios. The proposed algorithm, kmeans++-TVSPEA2, operates in two phases: clustering 

is performed using K-means++, and routing is optimised using Time Variant SPEA2 

(TVSPEA2). We evaluated the performance of kmeans++-TVSPEA2 against well-established 

multi-objective algorithms, including NSGA-II, NSGA-III, and SPEA2. Extensive testing with 

Pareto front metrics was conducted to demonstrate the algorithm’s efficiency and effectiveness.  

Future work could improve the DARP model by incorporating the strategic selec-tion of resting 

points for ambulances and exploring the advantages of relocating or adding these points. Such 

measures could enhance disaster preparedness and mitigate the effects of transportation 

network disruptions caused by natural disasters. 
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