
Journal of Administrative and Economic Sciences • Vol 18, Issue 1 (2025) • p 585-606

© 2025 Qassim University, all rights reserved

585

Measuring Time, Cost, Complexity, Quality, and Security of Ten

Free E-Learning Platforms and Their Compliance with Lehman's

Eight Laws

Ajlan S. Al-Ajlan

Departement of Management Information System, College of Business and Economics,

Qassim University, Buraydah 52571, Saudi Arabia

aajlan@qu.edu.sa

Abstract:

E-learning programs in all fields have become necessary, especially after the Covid-19

pandemic, so the use of free e-learning systems has spread and been widely used in

many governmental and private institutions, and their provision and management has

become an urgent contemporary issue. This paper has selected the top 10 free e-learning

programs, and the full code for each program was downloaded and then the code was

analyzed using Project Code Metrics, a professional software tool for analyzing and

measuring the time, cost, complexity and quality of different parts of the selected

programs through source code analysis. After downloading and analyzing 10 programs,

the results were analyzed and matched with Lehman's eight laws.

Keywords: Free e-learning Systems, Open-Source Software, Project Code Metrics, and

Lehman’s Laws

Journal of Administrative and Economic Sciences • Vol 18, Issue 1 (2025)

586

1. Introduction

Technology has developed rapidly since the invention of the computer, across all fields.

Computer programs can be divided into two types: commercial software and open-

source software (OSS). Commercial programs are encrypted, and researchers and

developers cannot view the files they contain without the permission of the owner of

the program, whether that is an individual or a company. By contrast, open-source

programs are not encrypted, and researchers and developers, even users, can view,

download, modify, and develop their files under license terms (Xuetao, et al.,2024,

Silberman 2014 and Alenezi, et al., 2015) .

The rapid progress in all fields, especially in technology, means that large software

packages, whether open source or commercial programs, need continuous development

in order to keep pace with this progress and maintain a competitive market position.

The development of these programs is highly complex and takes a long time, with a

high cost to add new and modern features and tools. The development of OSS is critical

for it to compete with commercial software, which is distinguished by the financial

support it receives from companies (Alenezi, et al., 2015 Arghavan, 2024).

The success of OSS is a powerful incentive for researchers, developers, and both for-

profit and non-profit companies to work on developing and benefiting from this kind

of software. Protecting the security of OSS is task, and represents a challenge for

developers and researchers because being open source means that anyone can browse

and modify the files (Silberman 2014). Despite this, this is a strong motivation and

incentive to work to protect it, especially since working on it does not require

permission and it is easy to access files and code without restriction or cost. In addition,

OSS has forums within which a group of experts answer questions and inquiries in

order to strive to develop these programs (Gamalielsson, et al., 2014 and Koponen

2006).

This paper aims to explore the evolution of open source software by studying ten open source

software and comparing them using the analysis program Project Code Meter. It is a

professional software tool that will be used to analyze and measure the time, cost, complexity,

quality, and security of different parts of the selected software through source code analysis.

Through this study, the results are analyzed and matched with Lehman's eight laws to determine

which one is the most advanced and widespread. We conclude this study with some

recommendations, observations, and suggestions for possible future work for these programs.

This paper will be organized as follows: The second section will briefly summarize the

concept of e-learning. A description of the development of OSS will be presented in

Section 3. The main section of this paper is section 4, which discusses the development

of OSS using the Project Code Meter analytical program as a case study. Section 5

presents an analysis and discussion of the work done in this study. Finally, the

conclusion and suggested future works are given in Section 6.

2. Literature Review

2.1. E-Learning Systems

E-Learning programs have been widely applied by for-profit, non-profit, and academic

organizations. Researchers and developers have used open-source code as a

Ajlan S. Al-Ajlan

587

programming language to create and develop this software, which is free and available

to anyone. The ease of accessing the code and downloading it, for free and without

restrictions, has led to a huge revolution in the programming world, with the

development of open-source programs including Internet servers (for example,

Apache), operating systems (including Linux), email, and e-learning programs (such as

Sakai, Moodle and ATutor) (Dagienė, et al., 2006 and Li, et al., 2011).

In the early 1970s, American scientist Richard Stallman developed OSS, creating a free

version of the UNIX operating system. GNU is a system to ensure OSS code is open to

all users.)Silberman 2014, Koponen 2006 and Dagienė, et al., 2006). In 2000, OSS

began as a public organization project, and the first version was released in 2002. A

German company then started to develop Star Division, which was acquired by Sun.

OpenSource.org provides all the information needed to help users learn how to develop

OSS (Li, et al., 2011).

Currently, there are more than 300 e-learning programs, and at least 75 of these are

open-source and used as free e-learning programs (Saeed 2013). A study by (Al-Ajlan,

et al., 2008) proved that some open-source programs, such as Moodle, are better than

commercial e-learning programs. The present study will present a comparison of 10

open-source programs, listed below in Table 1 (Sabine, et al., 2005 and Sauer 2007).

Table 1: The most popular free E-Learning Systems

No Software No Software

1. Moodle 2. ATutor

3. AnaXagora 4. Opigno

5. ILIAS 6. LON-CAPA

7. OpenOLAT 8. Fle3

9. Sakai 10. OpenACS

Since the COVID-19 pandemic, e-learning programs have been used in public

education and higher education in all countries of the world; they have also been used

in government organisations and the private sector. E-Learning provides an opportunity

for users to communicate with each other electronically by holding online sessions for

virtual classes for students and academics, as well as discussions among organisations

and councils for private and government companies. Moreover, e-learning programs

contain forums, chat functions, and email. Their use fosters a culture of education and

self-training to develop and improve the capacity of employees and students with

minimal effort and at low cost (Henneke et al., 2012, Postner, et al., 2014 and Patil,

2012).

There are many advantages that can be gained through the use of e-learning programs

and the work being done to develop these to suit the needs of all users. The COVID-19

situation demonstrated to the world the advantages of e-learning, and opened the door

for educational and other organisations to benefit from reducing costs, increasing

profits, and the possibility of employees and students performing work and tasks from

home. Among the many advantages of e-learning for educational organisations are that

it is possible to conduct training courses, complete activities and tasks, participate in

forums, track student progress and schedules, prepare for exams, and so on. Moreover,

e-learning provides important benefits to employees, from the ability to complete the

Journal of Administrative and Economic Sciences • Vol 18, Issue 1 (2025)

588

tasks assigned to them easily and conveniently while they are at home, to enabling them

to download files, attach documents, and send emails, etc. (Yadav, et al., 2014, Pires

2010, Llanos 2012). The employee enjoys, through the use of e-learning, complete

privacy with follow-up by the manager. The use of the Internet provides easy and fast

access at low cost to important information that helps the user to accomplish tasks with

efficiency and accuracy (Burov, et al., 2014 and Carlos, et al., 2011).

2.2. Why use Open-Source Programs

The reasons for working with free e-learning systems, can be grouped into seven

main reasons, as follows) Silberman 2014, Wang, et al., 2007, Scacchi 2010, Saini, et

al., 2022 and Yiqiao 2023):

1) Free: Most open-source programs are free of charge, as the code can be obtained,

modified, developed, and new things added according to the GNU General Public

License. The lack of cost is the main reason for using OSS.

2) Auditing capability: The audit capability helps to facilitate the review process for

OSS and enables users to audit these programs by displaying notes and problems

on forums. This does not happen with closed-source commercial programs.

3) Openness: The ability to obtain the code for OSS and the possibility to modify and

develop it and add new features according to a licence is what makes these programs

‘open’. However, they are not safe, due to the fact that anyone can access the files

and understand their nature, and thus penetrate and obtain important information

when used by official bodies.

4) Flexibility: OSS allows organisations of all kinds to integrate with researchers and

developers from around the world, which contributes to understanding the

requirements of those programs and speeding up their implementation.

5) Speed: Open-source programs have no restrictions, so their implementation and

development is fast, because their files and code are open and available.

6) High quality: The reason for the high quality of OSS is that thousands of researchers

and developers from all over the world are working to improve, develop, and

innovate new features, and work to solve problems related to securing these

programs.

7) Technical support: Because OSS is free, wide-ranging support is available through

the Internet. All OSS has online communities where documents, correspondence,

forums, and wiki news are stored, as well as live chat.

2.3. Software Evolution

Nowadays, the managers and developers of OSS projects face significant challenges in

controlling large-scale e-learning programs. These programs contain tools that are

difficult to control in terms of their expansion, distribution, maintenance, and

modification (Neil, 2023). Therefore, free e-learning faces a great challenge in regard

to developing and updating e-learning programs, especially in improving their quality

and protecting them from external interference. The development of e-learning

programs consists of two main points, namely, how to develop tools for these programs,

and the maintenance and improvement of the code (Wang, I. et al., 2007, Karus, et al.,

2011 and Bruno et al., 2019).

Ajlan S. Al-Ajlan

589

This study, which focuses on developing e-learning programs, examines e-learning

programs and monitors their development using metric technology, using 10 programs

as a case study to monitor and examine the extent of their development.

Good management and care in developing and updating software has become crucial

for the success of companies in achieving competitiveness in order to achieve the

highest profit margin. Therefore, most companies have relied heavily on developing,

updating, and innovating new ideas in open software, especially in the field of e-

learning (Yiqiao, 2023, Bruno et al., 2019 and Franco, et al., 2023).

Recent studies have focused on evaluating software scripts, algorithms, and tools,

alongside the impact of open science and the associated legal and ethical considerations

necessary to ensure the quality of these programs. In contrast, the practices and

challenges related to the sharing of software evolution datasets have garnered

insufficient attention. To address this gap, a comprehensive study was conducted to

analyze software evolution datasets published in the International Conference on

Mining Software Repositories from 2017 to 2021. This investigation examined 200

research papers to identify the types of software evolution datasets that were shared, as

well as the practices and challenges researchers encountered in the process of sharing

or utilizing these datasets. The results demonstrated that this study expands and enriches

existing research, offering valuable insights to assist researchers in sharing software

evolution datasets in a modern, accurate, ethical, and trustworthy manner (David et al.,

2024).

System failure prompts an organization to analyze the system to learn from the failure

and correct errors to ensure the system is operating to its intended purpose. Systems

development is critical to ensuring that these systems continue to operate, and

scheduled analysis keeps them operating properly and as intended. The study collected

publicly published incident reports, extracting and analyzing 104 action items. The

initial findings of this analysis are reported in four points: (1) the objectives of the

changes made, (2) the changes made to the systems, (3) the parts of the systems that are

changed, and (4) what motivates those actions (Matt 2024).

Software development is the process of continuously updating, improving, and

maintaining these systems. The more software systems are developed, the more

complex and large they become in order to satisfy their users. As a result, many studies

have been conducted on software evolution to understand the evolution pattern of

systems and to propose techniques to overcome the problems inherent in software

evolution. This study proposes a comprehensive software evolution dataset with time

information on open source Java systems. To do this, this study proposes a four-step

methodology: (1) selecting systems using a benchmark, (2) extracting (3) measuring

their releases, and (4) creating their time series. Our dataset contains time series of 46

software metrics extracted from 46 open source Java systems, and we make it publicly

available (Bruno et al., 2022).

In 1969, Meir Lehmann conducted an experimental study in cooperation with IBM,

aiming to improve and develop the effectiveness of the company’s programs, yet the

study had no impact on the company’s development practices. In 1974, Lehmann

identified some constants, or laws for software development. After several years of

Journal of Administrative and Economic Sciences • Vol 18, Issue 1 (2025)

590

intense activity, the current version of these laws was published in 1996 (Herraiz, et al.,

2013 and Lehman, et al., 1997).

Figure 1: The Lehman Laws to Understanding the Dynamics of Software Evolution

Lehmann introduced eight laws of software development and developed a theory to test

software development engineering. These eight laws are important for understanding

software development and suggesting the best solutions to the problems facing

programs (Liguo et al., 2013 and Herraiz, et al., 2013). This study explores how

development problems with software can be solved and also proposes some solutions

to these problems, as shown in Figure 1.

As systems continue to evolve with rapid technological advancement, the importance

of Lehmann’s eight laws becomes clear. This study aims to establish indicators of the

validity of Lehmann’s laws by using and analyzing three systems. This study uses a

General Systems Theory (GST) perspective when analyzing the laws of system

evolution. An exploratory empirical approach consisting of four stages was used: 1)

applying the GQM framework to validate Lehmann’s laws; 2) collecting data using

metrics applied to the target information system; 3) preparing data and processing

metrics; and 4) quantitative analysis, examining metrics across different versions of

systems. This study demonstrated that Lehmann’s eight laws have been examined and

validated, in part, in the context of the systems studied in this study. It also contributes

to the understanding of system evolution with a focus on the practical application of

Lehmann’s laws (Augusto. et al., 2024).

3. Evolution of E-Learning Systems

This section will present an analysis of CPVTFe-LS (Current and Previous Versions in

Ten Free e-learning Systems) using PCM (Project Code Metrics) as a case study. The

study utilises FELS to uncover the differences between these ten systems, and will

examine four areas of the CPVTFe-LS code: 1) statistical labour distribution, 2) quality

measurements, 3) Project Code Meter time, and 4) quantitative metrics.

Rule1: Continuing Change

Rule2: Increasing Complexity

Rule3: Self Regulation

Rule4: Conservation of Organisational Stability

Rule5: Conservation of Familiarity

Rule6: Continuing Growth

Rule7: Declining Quality

Rule8: Feedback System

Ajlan S. Al-Ajlan

591

PCM is a professional tool designed to measure the degree of complexity in the special

code and special projects of large programs, and to simplify this complexity to aid

understanding, development and maintaining of the program. The main goal of PCM is

to identify the nature of the code, regardless of its complexity and analysis, through

factors that help reduce the time required for understanding software projects and, thus,

reduce costs (Project Code Meter 2024).

PCM is designed to calculate cost, time, objectivity, repeatability, and also compare

multiple versions of source code. This program analyzes Java, C, C++, J, PHP,

JavaScript, MetaTrader, UnrealEngine, and more source files. It also generates detailed

reports compatible with Microsoft Excel, HTML, MS Project, CSV, and cost and effort

estimates using WMFP, COCOMO 81, COCOMO II 2000, and Revic 9.2 for

comparison. It also calculates several code metrics including flow complexity, logical

LOC, comments, constants, and strings. In addition, it warns of some code quality

issues such as complex code structure and insufficient comments (Project Code Meter

2024). PCM has four standard metrics, which this study will use to measure the

evolution of e-learning systems, as shown in Tables 2, 3, 4, and 5 below.

3.1. Statistical Labour Distribution

Statistical labour distribution (SLD) shows the number of hours. In large software

projects, this method allows measuring of programming time in order to properly

employ it according to the Weighted Micro Function Points Algorithm (WMFPA). By

identifying business hours, SLD is useful for maintaining working hours and reducing

the burden on programmers or business teams. SLD comprises of five standard

measures, which are as follows (Project Code Meter 2024):

1. Timing: The time is displayed to the programmer in minutes and hours format

independently, in order to show the time spent on coding, testing, and correction in

the program file.

2. Encoding: The encoding time is calculated and displayed in the form of minutes

and a percentage of the total time of the developer in the program file; this criterion

is used only for coding in the program file.

3. Debugging: Here, the calculated time spent on the process of correcting errors in

the program is displayed; the time is shown in the form of minutes and percentage

of total time in the program file.

4. Testing: Only the calculated time spent by the programmer on the test phase is

displayed in the program file. The calculated time is shown in minutes and as a

percentage of the total file development test.

5. Object vocabulary, flow complexity, data transfer, embedded data, object

configuration, code structure, computation, and comments: Scales the WMFPA

source code measured for all files within the program. This parameter is again

shown in minutes and as a percentage of the total file development time.

Journal of Administrative and Economic Sciences • Vol 18, Issue 1 (2025)

592

The results of the comparison between ten e-learning systems are divided based on the

two versions (current version and previous version) in regard to the standard measures

of SLD, as shown in Table 2. To summarise, the results show that Moodle and ILIAS

appear to show the highest number of hours in their current versions. By contrast, Fle3,

OpenOLAT, LON-CAPA, and ILIAS appear to show the lowest number of hours for

the same versions. In the previous versions, ILIAS, Moodle, Dokeos, and Opigno show

the highest number of hours. By contrast, AnaXagora, Fle3, LON-CAP, AOpenOLAT,

and AnaXagora have the lowest number of hours for the same versions.

Table 2: The highest and lowest number of hours in the current and previous versions of ten

e-learning systems, according to SLD

No SLD Current Version Previous Version %

ELS HHs ELS LHs ELS HHs ELS LHs

1. Object Conjuration ILIAS 59459 Fle3 1916 ILIAS 43923 AnaXagora 1485 15.0

2. Code Structure Moodle 28287 Fle3 608 Moodle 23582 Fle3 598 9.1

3. Testing Moodle 88724 Fle3 2965 Moodle 73971 Fle3 2245 9.1

4. Inline Data ILIAS 7574 OpenOLAT 183 ILIAS 6842 LON-CAPA 187 5.1

5. Comments Moodle 3808 LON-CAPA 85 Moodle 3789 LON-CAPA 82 0.3

6. Object Vocabulary Moodle 88565 LON-CAPA 1740 dokeos 84824 Fle3 2043 2.2

7. Arithmetic Intricacy Moodle 10257 OpenOLAT 197 Moodle 9456 OpenOLAT 123 4.1

8. Data Transfer Moodle 47749 OpenOLAT 2385 Opigno 36763 OpenOLAT 3135 13

9. Coding Moodle 174677 Fle3 5351 Moodle 143579 AnaXagora 4365 9.8

10. Debugging Moodle 137877 Fle3 4797 Moodle 114589 LON-CAPA 4136 7.3

11. Flow Complexity Moodle 140428 OpenOLAT 1432 Moodle 124676 OpenOLAT 1134 5.9

As can be seen from Table 2, Moodle maintained the highest number of hours for both

the previous and current version, in the SLD standards for coding, flow complexity,

debugging, testing, code structure, arithmetic intricacy, and comments, with an increase

in the current version of no more than 10%. However, for data transfer, the current

version of Moodle measured higher than Opigno, with an increase of 13% compared to

the previous version. On the other hand, ILIAS maintained the highest number of hours

in the previous and current versions for the SLD standard for object conjuration (15%)

and inline data (5.1).

3.2. Quality Measurements

All of the quality metrics (QLMs) in SCPVTFe-LS are shown in Table 3. These metrics

provide an indication of some of the basic source code characteristics that affect

maintainability, reuse, and peer review. The QLMs consist of eight standard metrics, as

follows (Project Code Meter, 2024):

1. Number of Code Quality Observations: The number of warnings indicating

problems affecting code quality is displayed. If the value is zero, this means that the

quality of the code is high.

2. Code to Comment Ratio: This criterion indicates the balance between code words

and the comment line. A value of 100 means that each symbol in the code has a

comment. If the value is greater than 100, each code line contains more than one

comment, but if the value is less than 100 this means that only some lines of code

have comments.

Ajlan S. Al-Ajlan

593

3. Essential Comment Factor: This criterion expresses a balance between important

code words and high-quality comment lines. If the value is 100, this means that each

task code statement has a high-quality comment. But if the value is higher than 100,

this means that the line contains more than one comment. If the value is less than

100, it means that only some lines of code have comments.

4. Code Structure Modularity: This criterion is concerned with code structure, which

is divided into functions and classes. If the values are close to 100, this indicates

that there is a good balance of code for each unit. If the values are above 100, this

indicates hashed code. Conversely, if the values are less than 100, this indicates low

typicality.

5. Logic Density: This standard focuses on how extensively logic is used within

program code.

6. Source Divergence Entropy: In this standard, objects are processed by logic. If the

values are high, this indicates manipulation.

7. Information Diversity Factor: This criterion attempts to reuse objects again. If the

values are high, it means more reuse.

8. Object Convolution Factor: This parameter helps objects to interact with each other.

If the values are higher, this means more handling, and therefore a more complex

data flow.

The result of the comparison between ten e-learning systems, divided into two versions

(current version and previous version), according to standard QLMs, as shown in Table

3. For the current versions, the results can be summarized as showing that the e-learning

systems with the highest number of hours according to QLMs are AnaXagora (in LD,

CCR, SDE, ECF), Fle3 (LC, SDE), ILIAS (CSM), LON-CAPA (IDF), and Dokeos

(CQNC). By contrast, the e-learning systems with the lowest number of hours in

standard QLMs are Dokeos (IDF, OCF, CSM), OpenOLAT (LD, CCR), ILIAS (CCR,

ECF), ATutor (CCR), LON-CAPA (SDE), and Fle3 (CQNC).

Table 3: The highest and lowest number of hours in ten e-learning systems (current and

previous versions) according to QLMs

No QLMs Current Version Previous Version %

ELS HHs ELS LHs ELS HHs ELS LHs

1. Information
Diversity Factor

LON-CAPA 1137 Dokeos 224 LON-CAPA 980 Opigno 211 7.4

2. Logic Density AnaXagora & Fle3 125 OpenOLAT 43 ATutor 123 OpenACS 45 0.8

3. Object Convolution
Factor

OpenOLAT 39 Dokeos 15 Moodle 48 Fle3 16 -10.3

4. Code Structure

Modularity
ILIAS 177 Dokeos 81 ILIAS 167 LON-CAPA 68 2.9

5. Code to Comment
Ratio

AnaXagora 36 ATutor & ILIAS

 &OpenOLAT
11 AnaXagora 41 OpenOLAT 8 -6.5

6. Source Divergence

Entropy
AnaXagora & Fle3 72 LON- OpenACS 43 Dokeos 76 LON-CAPA 41 -2.7

7. Code Quality Notes
Count

Dokeos 4603 Fle3 67 Dokeos 3934 AnaXagora 57 7.8

8. Essential Comment

Factor
AnaXagora 125 ILIAS 28 AnaXagora 143 ATutor 22 -6.7

Journal of Administrative and Economic Sciences • Vol 18, Issue 1 (2025)

594

In previous software versions, as shown in above in Table 3, the results can be

summarised as showing that the e-learning systems with the highest number of hours

in standard QLMs are AnaXagora (in CCR, ECF), Dokeos (SDE, CQNC), Moodle

(OCF), ILIAS (CSM), LON-CAPA (IDF), and ATutor (LC). By contrast, the e-learning

systems with the lowest number of hours in standard QLMs are LON-CAPA (CSM,

SDE), OpenOLAT (CCR), Opigno (IDF), ATutor (ECF), AnaXagora (CQNC),

OpenACS (LD), and Fle3 (OCF).

3.3. Quantitative Metrics

Quantitative Metrics (QTMs) is a traditional metric that uses the Legacy Sizing

Algorithms (LSA) approach and is oriented to obtain specific data. This approach is

presented for the entire project based on context. QTMs consist of seven standard

metrics, as follows (Project Code Meter 2024):

1. Files: The files within any project are measured and their number is determined.

2. Boolean Lines of Code: This indicates the number of lines in a code file. This

standard can be used with LSA and price models as an advanced change to input

precision for the SLOC (Somatic Source Lines to Token) parameter.

3. Multi-line Comments: This criterion indicates the number of comments that exceed

more than one line of text.

4. Single-line Comments: This parameter displays comments in a single line of text.

5. High-quality Comments: This criterion indicates the number of comments,

regardless of the number of lines in the code.

6. Strings: This parameter indicates the number of text strings specified in the source

code. The external source code for the text is not calculated. For example, a PHP

page contains an HTML body.

7. Numeric constants: This standard indicates the number of encoded digits the code

contains.

The result of the comparison between ten e-learning systems (current version and

previous version) according to the standard measures of QTMs are shown in Table 4.

For the current software versions, the results can be summarized as showing that the e-

learning systems with the highest number of hours according to standard QLMs are

Moodle (in LLC, SLC, MLC, HQC, NC), Opigno (F), and ILIAS (S). By contrast, the

e-learning systems with the lowest number of hours in standard QLMs are LON-CAPA

(F, LLC, SLC, S), OpenOLAT (HQC, NC), and AnaXagora (MLC).

For the previous software versions, as shown below in Table 4, the results can be

summarised as showing that the e-learning systems with the highest number of hours

in standard QLMs are Moodle (in LLC, SLC, HQC, NC), Opigno (F, MLC), and ILIAS

(S). By contrast, the e-learning systems with the lowest number of hours in standard

QLMs are LON-CAPA (SLC, S), OpenOLAT (MLC, NC), ATutor (HQC), and Fle3

(F).

Ajlan S. Al-Ajlan

595

Table 4: The highest and lowest number of hours in ten e-learning systems (current and

previous versions), based on QTMs

No QTMs Current Version Previous Version %

ELS HHs ELS LHs ELS HHs ELS LHs

1. Files Opigno 12241 LON-CAPA 192 Opigno 10764 Fle3 296 6.4

2. Logical Lines

of Code
Moodle 1161993 LON-CAPA 37323 Moodle 1064746 AnaXagora 4353 4.4

3. Single Line

Comments
Moodle 224271 LON-CAPA 486 Moodle 197653 LON-CAPA 563 -6.3

4. Multi Line

Comments
Moodle 97077 AnaXagora 1726 Opigno 84310 OpenOLAT 1763 7

5. High Quality

Comments
Moodle 294972 OpenOLAT 8525 Moodle 283421 ATutor 8081 2.0

6. Strings ILIAS 1076577 LON-CAPA 15037 ILIAS 953016 LON-CAPA 13948 6

7. Numeric

Constants
Moodle 469180 OpenOLAT 10453 Moodle 383105 OpenOLAT 8264 10

3.4. Project Code Meter Time

For the current software versions, the results for Project Code Meter Time (PCMT) can

be summarized as showing that Moodle has the highest total time (in C, D, T, FC, OV,

OC, AI, DT, C, CS) and ILIAS in (ID). On contrast, Fle3, OpenOLAT and LON-CAPA

appear to be the low number of hours in the same version as in Table5. The previous

version, Moodle and ILIAS appear to be the high number of hours. On contrast, LON-

CAP, AnaXagora, Fle3 and AOpenOLAT appear to be the low number of hours in the

same version.

Table 5: The highest and lowest number of hours in ten e-learning systems (current and

previous versions) according to PCMT

No PCMT Current Version Previous Version %

ELS HHs ELS LHs ELS HHs ELS LHs

1. Coding Moodle 10480668 Fle3 321078 Moodle 98524847 Fle3 296420 -81

2. Debugging Moodle 8272651 Fle3 287648 Moodle 8139482 AnaXagora 275935 0.8

3. Testing Moodle 5323445 Fle3 177905 Moodle 4903639 LON-CAPA 148492 4.1

4. Flow Complexity Moodle 8425682 OpenOLAT 85927 Moodle 7963591 OpenOLAT 82864 2.8

5. Object Vocabulary Moodle 5313902 LON-CAPA 104456 Moodle 5186369 LON-CAPA 98451 1.2

6. Object Conjuration Moodle 4507044 Fle3 114988 Moodle 4385296 AnaXagora 116025 1.4

7. Arithmetic Intricacy Moodle 615435 OpenOLAT 11872 ILIAS 598573 OpenOLAT 10539 -1.4

8. Data Transfer Moodle 2864977 LON-CAPA 81725 Moodle 2795734 LON-CAPA 77837 1.2

9. Comments Moodle 228513 LON-CAPA 5118 Moodle 217459 LON-CAPA 4745 2.5

10. Code Structure Moodle 1697238 LON-CAPA 34441 Moodle 1558730 Fle3 30764 4.3

11. Inline Data ILIAS 454440 OpenOLAT 10995 ILIAS 429574 OpenOLAT 9073 -2.8

4. DISCUSSION AND RESULTS

In Section 3 above, we used PCM to measure the ten systems of SCPVTFe-LS as a case

study. The study examined two versions of all SCPVTFe-LS systems and discovered

differences between these versions across the four metrics chosen for the present study,

which are described in depth in the above section. This discussion will summarise the

results of the present study, focusing on each of the four areas in turn, which are: 1)

SLD, 2) QLMs, 3) PCMT, 4) and QTMs.

Journal of Administrative and Economic Sciences • Vol 18, Issue 1 (2025)

596

4.1. Statistical Labour Distribution

Regarding the SLD criteria, the best evolution in SCPVTFe-LS is Moodle, which had

the highest total number of hours (755,725) in all SLD criteria, as shown in Figure 2.

The second-best evolution is ILIAS, which has 543,356 hours, and the third is Opigno,

which has 41,285 hours. By this benchmark, Fle3 is the program with the lowest

number of hours (26,217) across all SLD criteria.

Figure 2: SLD total for all ten e-learning systems

For the previous software versions, Moodle has the highest total number of hours

(633,622) in all SLD criteria as in Figure 2. The second-best evolution is ILIAS, which

has 490,791 hours, and the third is Opigno, which has 367,821 hours. By this

benchmark, Fle3 is the program with the lowest number of hours (23,175) across all

SLD criteria.

4.2. Quality Measurements

Figure 3 shows the QLMs for all SCPVTFe-LS systems. The best evolution among the

current software versions is Dokeos, which has the highest total number of hours

(5,161) across all SLD criteria. The second-best evolution is Moodle, which has (4,589)

hours, and the third is Opigno, which has 4,041 hours. By this benchmark, AnaXagora

is the program with the fewest hours (1,037) across all SLD criteria.

Figure 3: Total QTMs for all ten e-learning systems

28775
77315

343137

26217

543356

31212

755725

305482

40330

412185

22040

67554

328061

23175

490791

26840

633622

273704

35369

367821

0

100000

200000

300000

400000

500000

600000

700000

800000
SLD in Ten E-Learning Systems

Last Version

 previous version

1037

1470

5161

1049

3946

1651

4476

2702

1245

4041

821

1377

4636

1011

3660

1430

4589

2261

946

8082

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Quality Measurements in all E-Learning Systems

Last Version

 previous version

Ajlan S. Al-Ajlan

597

For the previous versions of the software, Dokeos has the highest total number of hours

(4,636) across all SLD criteria, as shown in Figure 2. The second-best evolution is

Moodle, which has 4,476 hours, and the third is ILIAS, which has 3,660 hours. By this

benchmark, AnaXagora is the program with the lowest number of hours (821) in all

SLD criteria.

4.3. Quantitative Metrics

In terms of the QTM criteria, Moodle is still a high-scoring evolution, with the highest

total number of hours (306,571) of all QTM criteria, as shown in Figure 4. The second

highest scoring evolution is ILIAS, which has 2,386,835 hours, and the third is Dokeos,

which has 1,568,831 hours. By this benchmark, LON-CAPA is the program with the

lowest number of hours (95,356) across all QTM criteria.

Figure 4: Total QTMs for all ten e-learning systems

For the previous software versions, Moodle is still a high-scoring evolution, with the

highest total number of hours (2,715,292) in all QTMs criteria, as shown in Figure 4.

The second-best evolution is ILIAS, which has 2,093,906 hours, and the third evolution

is Dokeos, which has 1,452,972 hours. By this benchmark, AnaXagora is the program

that gets the fewest hours (80,637) across all QTM criteria.

4.4. Project Code Meter Time

For the PCMT criteria, Moodle is again a high-scoring evolution, with the highest total

number of hours (48,153,527) in all PCMT criteria, as shown in Figure 5. The second-

best evolution is ILIAS, which has 32,601,748 hours, and the third is Opigno, which

has 24,731,493 hours. By this benchmark, Fle3 is the program that gets the fewest hours

(1,573,259) across all PCMT criteria.

For the previous software versions, Moodle is again a high-scoring evolution, with the

highest total number of hours (46,006,190) for all PCMT criteria, as shown in Figure

4. The second-best evolution is ILIAS, which has 30,562,010 hours, and the third

evolution is Opigno, which has 23,227,520 hours. By this benchmark, Fle3 is the

program that gets the fewest hours (1,473,229) across all PCMT criteria.

137972

215015

1568831

125124

2386835

95356

3065671

913712

125751

1533374

80637

196060

1452972

121905

2093906

105099

2715292

568216

107544

1381041

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

QTMs in Ten E-Learning Systems

Last Version

 previous version

Journal of Administrative and Economic Sciences • Vol 18, Issue 1 (2025)

598

Figure 5: Totals for PCMT across all ten e-learning systems

4.5. The Rate Change of Four Metrics Between The SCPVTFe-LS Systems

This discussion will focus on the SCPVTFe-LS comparison, particularly the change in

rates between the current and previous software versions. The highest rate across all

standards in the SLD areas, between current and previous versions, is for Object

Conjuration in the ILIAS software, which recorded 15%. The highest rate in QLMs was

for Code Quality Notes Count in the Dokeos software, which recorded 7.8%. Moreover,

the highest rate in QTM areas, between current and previous software versions, was for

Numeric Constants in Moodle, which recorded 10%. Finally, the highest rate in PCMT

was for Code Structure in Moodle software, which recorded 4.3%.

By contrast, the lowest rate in the SLD areas was for the Comments standard, which

recorded 0.3% in Moodle software, but the lowest rate in QLMs was for the Object

Convolution Factor, which recorded -10.3% in OpenOLAT software. Moreover, the

lowest rate in QTMs was for Single-Line Comments, which recorded -6.3% in Opigno

software, and the lowest rate in the PCMT areas was for Coding, which recorded -81%

in Moodle software.

Data analysis based on Table 7 above indicates that the change in rate between the

current and previous versions of the ten e-learning systems is high for SLD, where all

evolutions in this stage are between 2% and 15%. The second highest evolution is in

QTMs, where all evolutions in this stage are between -6.3% and 10%. For QLMs and

PCMT, the systems perform well in some standards but in others show a minus rate.

This study proves that there has been no evolution in some of the SCPVTFe-LS

systems, namely ATutor and OpenACS. The other systems have seen evolution; these

systems are: Moodle, AnaXagora, ILIAS, OpenOLAT, Opigno, LON-CAPA, Dokeos,

and Fle3.

1726804
4639224

20588517

157259

32601748

1712082

48153527

18329209

2420123

24731493

1591710

4405386

19516513

1473229

30562010

1555432

46006190

16732357

2244602

23227520

0

10000000

20000000

30000000

40000000

50000000

60000000

PCMT in Ten E-Learning Systems

Last Version

 previous version

Ajlan S. Al-Ajlan

599

4.6. Applying Lehman’s Laws in SCPVTFe-LS

In this part of the research, Lehman’s laws were applied to monitor the development in

SCPVTFe-LS. In most of the programs, these laws worked to achieve rapid

development to ensure quality and accuracy in obtaining data related to the four

standards that were used in this study. This indicates that the SCPVTFe-LS systems are

in line with Lehman’s laws.

After checking the data shown in Appendix E, there was found to be no evolution in

some of the SCPVTFe-LS systems, namely: ATutor and OpenACS. The other systems

– Moodle, AnaXagora, Fle3, Dokeos, OpenOLAT, ILIAS, LON-CAPA, and Opigno –

all showed evolution.

Rules 3 and 7: with regard to the third and seventh laws, a high percentage was achieved

for these, ranging between 7 and 9 of the general trends of these systems. This proves

that these systems have developed continuously and rapidly, which has led to an

increase in the complexity of these systems and, therefore, requires an increase in

support and maintenance.

Rules 1, 2, and 4: it became clear that the first, second, and fourth Lehman’s Laws are

compatible with the general laws in the data of SCPVTFe-LS, and they are between 5

and 6, as shown in Figure 6. This proves that these systems are being constantly

modified and updated in order to obtain user satisfaction, increase the life-cycle of the

system, and keep pace with new developments.

Rules 5, 6, and 8: the study found that laws 5, 6, and 8 are the laws that least affect the

ten systems under study. These laws are compatible with some of the policies and trends

of some regimes and achieved a low percentage, ranging between 2 and 3. This

Table 7: Changing Rate between ten e-Learning systems in current and previous versions

1. Statistical Labor

Distribution

2. Quality

Measurements

3. Quantitative Metrics 4. Project Code Meter

Time

Package % Package % Package % Package %

Object Conjuration -

ILIAS
15 Information Diversity

Factor- LON-CAPA
7.4

Files- Opigno
6.4 Coding-

Moodle -81

Code Structure-

Moodle

9.1 Logic Density-

AnaXagora & Fle3

0.8 Logical Lines of Code

-Moodle

4.4 Debugging-

Moodle 0.8

Testing-Moodle 9.1 Object Convolution

Factor-OpenOLAT

-10.3 Single Line

Comments-Moodle

-6.3 Testing-

Moodle 4.1

Inline Data-ILIAS 5.1
Code Structure

Modularity- ILIAS

2.9
Multi Line Comments

-Moodle

 7 Flow

Complexity

-Moodle 2.8

Comments-Moodle 0.3
Code to Comment

Ratio- AnaXagora

-6.5
High Quality

Comments -Moodle

 2.0 Object
Vocabulary

-Moodle 1.2

Object Vocabulary-

Moodle

2.2 Source Divergence

Entropy- AnaXagora &
Fle3 2.7

 Strings-ILIAS

 6 Object

Conjuration-
Moodle 1.4

Arithmetic

Intricacy-Moodle

4.1 Code Quality Notes

Count- Dokeos

 7.8 Numeric Constants-

Moodle

 10 Arithmetic

Intricacy-Moodle -1.4

Data Transfer-
Moodle

13 Essential Comment
Factor- AnaXagora

 -6.7

Data Transfer-

Moodle 1.2

Coding-Moodle 9.8 Comments-

Moodle 2.5

Debugging-Moodle 7.3

 Code Structure-

Moodle 4.3

Flow Complexity-

Moodle

5.9

 Inline Data -

ILIAS -2.8

Journal of Administrative and Economic Sciences • Vol 18, Issue 1 (2025)

600

indicates that the feedback system in these systems is not active and interaction with

users is low. In addition, it suggests that the continuation of growth and development

in these systems is slow and is not keeping pace with the rapid changes of the current

era. As for maintaining intimacy within these programs, it is low, unstable, and volatile.

Figure 6: Lehman’s Laws in SCPVTFe-LS

4.7. Objectives and Recommendations

It is important to measure systems from time to time in order to develop them. For free

e-learning systems, there are large groups of developers who are constantly developing

these systems to compete with paid e-learning systems. This paper helps developers

and researchers and encourages them to examine and measure these systems in order to

uncover errors in previous versions and work to solve these issues in new versions.

The main objective of this study was to measure the development of SCPVTFe-LS. The

study has found that there has indeed been an evolution among these ten systems. Based

on the results of this study, some implications and recommendations are put forth:

1. It is important to measure the development of any system because this will uncover

the strengths and weaknesses of these systems. This is beneficial because:

a. Discovering strengths will demonstrate that these systems are working

properly.

b. Discovering errors will help developers to understand and work to correct

them in order to resolve them in new versions of the software.

2. This study proves that the systems must be continually modified to ensure they are

acceptable, or it will become progressively less satisfactory to use. A development

process is necessary for any system, but especially free OSS. This development will

help in planning and coordination, in both the short and the long term.

3. Any existing system will face many problems that necessitate improvement; among

these problems is the continuous updating of the program to be compatible with

0
1
2
3
4
5
6
7
8
9

10
Lehman’s Laws in SCPVTFe-LS

Ajlan S. Al-Ajlan

601

new technology and to avoid problems in the latest version. This will only be

achieved by continuously measuring the performance of these programs with

evaluation tools, such as PCM .

4. Controlling systems, especially free OSS, is an important challenge today,

particularly with regard to how to develop the environment of these systems and

how to introduce the necessary improvements to secure these systems from external

interference.

5. The development of programs leads to an increase in the complexity of operations,

and this requires updating and self-maintenance of these systems .

6. The organisational stability of the program is critical so the organisational

environment of the system must be preserved.

7. Lack of interest in developing, updating, and maintaining these programs will lead

to a decrease in their quality, and thus in users’ confidence in them. This means they

will be less competitive compared with other programs. Therefore, continuous

measurement of these systems is needed to enhance the quality of the programs by

making the necessary updates and fixing errors.

8. The results will be valuable in providing a deeper understanding for researchers and

professionals interested in information systems evolution.

There are some challenges and problems that this study faced, which are:

1. Dealing with 10 programs and analyzing them requires a long time, high

concentration, and double effort to reach the desired results.

2. Difficulty in obtaining previous studies to analyze the quality of the source code.

3. It was difficult to download the entire source code for some programs, so many

programs were excluded for this reason.

4. The huge and huge size of the source code for some programs and the difficulty

of analyzing it with the Pw program

5. It is often difficult to conduct an effective source code analysis, especially in

complex and large-scale programs.

5. Conclusion And Future Work

The quality of any OSS program gives an indication of the efficiency, reliability, and

ability of these programs to secure protection and to self-update. Often, developing OSS

projects comes with difficulty maintaining the quality of these programs. Therefore, the

managers of such projects apply methods and techniques that use algorithms to evaluate

the quality of the project, using a variety of metrics. For any high-quality software

development, it is recommended that there be low coupling and high cohesion between

program modules.

The importance of measuring the development of any system helps in discovering the

strengths and weaknesses of these systems, as discovering the strengths will prove that

Journal of Administrative and Economic Sciences • Vol 18, Issue 1 (2025)

602

these systems are working properly, and discovering errors will help developers

understand them and work to correct them in order to avoid them in new versions.

This paper has measured the evolution of ten OSS programs in the field of e-learning,

looking at two versions of each (the current version and previous version). Four main

metric-based tools were used to measure the source code, and Project Code Metrics

were also used. The results of the study show that two of the ten programs have not

evolved; these programs are ATutor and OpenACS. The others have seen evolution, at

a level that differs from one program to another; these programs are Moodle,

AnaXagora, Fle3, Dokeos, OpenOLAT, ILIAS, LON-CAPA, and Opigno.

In addition, this study has used Lehman’s laws to monitor the development of

SCPVTFe-LS. In most programs, these laws have worked to achieve rapid development

to ensure quality and accuracy in obtaining data related to the four standards used in

this study. Therefore, it can be concluded that the SCPVTFe-LS are in line with

Lehman’s laws.

Furthermore, this paper has identified a number of studies that have described the

evolution of OSS as having age, like people, highlighting that it must adapt to changing

requirements and environments. Additionally, it has shown that the ten OSS programs

have been a concern for a number of developers and have long been at the core of

investigations. Thus, a number of theoretical models for the evolution of OSS have been

developed and empirically examined. Measuring commercial software is now relatively

easy to do, being within the skill set of most developers.

Acknowledgement

The authors wish to acknowledge contributions to Qassim University for its

encouragement and financial support.

References

1. Xuetao, L, et al. (2024) Systematic Literature Review of Commercial Participation

in Open Source Software. ACM Trans. Softw. Eng. Methodol.

2. Silberman, G. (2014). A Practical Approach to Working with Open Source

Software, Intellectual Property & Technology Law Journal, 26(6), 76–89.

3. Alenezi, M. & Zarour, M. (2015) Modularity Measurement and Evolution in

Object-Oriented Open-Source Projects. In Proceedings of the The International

Conference on Engineering & MIS. (pp. 7-16) ACM, USA.

4. Alenezi, M. & Khellah. F. (2015) Architectural Stability Evolution in Open-Source

Systems. In Proc. of the The International Conference on Engineering & MIS. (pp.

35-39) ACM, USA.

5. Arghavan S. and Jinghui C. (2024) Characterizing Usability Issue Discussions in

Open Source Software Projects. Proc. ACM Hum.-Comput. Interact. 8, CSCW1,

No: 30 pp.1- 26.

6. Gamalielsson, J. & Lundell, B. (2014) Sustainability of Open Source software

communities beyond a fork: How and why has the LibreOffice project evolved?,

Journal of Systems and Software, Vol. 89(1), 128–145.

Ajlan S. Al-Ajlan

603

7. Koponen, T. (2006) Evaluation Framework for Open Source Software

Maintenance. In Proc. of the international Conference on Software Engineering

Advances. IEEE Computer Society, (pp. 52-59) Washington.

8. Dagienė, V. & Grigas, G. (2006) Quantitative evaluation of the process of open

source software localization. Informatica, 17(1), 3-12.

9. Li, Y. et al., (2011) Open source software adoption: motivations of adopters and a

motivations of non-adopters. SIGMIS Database journal, 42(2),76-94.

10. Al-Ajlan, A. & Zedan, H. (2008) Why Moodle, in Proc. 12IEEE International

Workshop on Future Trends of Distributed Computing Systems, IEEE Press, (pp.

58-64) China.

11. Sabine, G. & L. Beate, (2005) An evaluation of open source e-learning platforms

stressing adaptation issues, in Procs of Fifth IEEE International Conference on

Learning Technologies., IEEE: (pp. 78-91) Ischia, Italy.

12. Saeed, F. (2013) Comparing and Evaluating Open Source E-learning Platforms,

International Journal of Soft Computing and Engineering, 3(3), 244-249.

13. Sauer R. (2007) Why Develop Open Source Software? The Role of Non-Pecuniary

Benefits, Monetary Rewards and Open Source Licence Oxford Review of

Economic Policy, 23(4), 605-619.

14. Henneke M. & Matthee M. (2012) The adoption of e-Learning in corporate training

environments: an activity theory based overview. In Proc.s of the South African

Institute for Computer Scientists and Information Technologists Conference, (pp.

178-187), ACM, USA.

15. Postner, K. & Jackson, S. (2014) Teaching open source (software), In Procs of the

45th ACM technical symposium on Computer science education, (pp. 722-734).

16. Patil, A. (2012) Emerging technologies in distance education and their impact on

the stakeholders, International Conference 2012 on Sousse (ICEELI), (pp. 1-5).

17. Yadav, N., et al., (2014) Developing an Intelligent Cloud for Higher Education,

SIGSOFT Softw. Eng. Notes, 39(1), 1-17.

18. Pires J. and Cota P. (2010), Evolutive mechanism for E-Learning platforms: A new

approach for old methods, IEEE EDUCON 2010 Conference, Madrid, (pp. 891-

894).

19. Llanos, J. and Castillo S. (2012) Differences between traditional and open source

development activities. In Proceedings of the 13th international conference on

Product-Focused Software Process Improvement, (pp. 131-144). Verlag, Berlin:

Springer, Heidelberg.

20. Burov, E. & Parfenov, R. (2014) Learning Analytics for Mixed E-Governance-E-

Learning Projects. In Proceedings of the 2014 Conference on Electronic

Governance and Open Society: Challenges in Eurasia (EGOSE '14), (pp. 34-37).

21. Carlos J. Costa and Manuela A. 2011. Analysis of e-learning processes.

In Proceedings of the 2011 Workshop on Open Source and Design of

Communication (OSDOC '11), (pp. 37-40).

22. Wang, Y. et al. (2007) Measuring the evolution of open source software systems

with their communities. SIGSOFT Softw. Eng, 32(6), 1-7.

23. Scacchi. W. (2010) The future of research in free/open source software

development. InProcs of the FSE/SDP workshop on Future of software engineering

research, (pp. 315-320). USA: ACM.

Journal of Administrative and Economic Sciences • Vol 18, Issue 1 (2025)

604

24. Saini, M., Arora, R., & Adebayo, S. O. (2022). In-Depth Analysis and Prediction

of Coupling Metrics of Open Source Software Projects. Journal of Information

Technology Research (JITR), 15(1), 1-16.

25. Yiqiao J., et al. (2023) Code Recommendation for Open Source Software

Developers. In Proc. of the ACM Web Conference 2023 (WWW '23). Association

for Computing Machinery, pp. 1324–1333.

26. Neil S. (2023) Locking Down Secure Open Source Software. Commun. ACM, Vol:

66(5), pp:13–14.

27. Karus, S. & Gall, H. (2011) A study of language usage evolution in open source

software. In Procs of the 8th Working Conference on Mining Software

Repositories, (pp. 13-22).

28. Bruno S., et al.,)2022 (A time series-based dataset of open-source software

evolution. In Proc of the 19th International Conference on Mining Software

Repositories (MSR '22), No: 13, pp.702–706.

29. Bruno, L. et al. (2019) Analysis of Coupling Evolution on Open Source Systems.

In Proceedings of the XIII Brazilian Symposium on Software Components,

Architectures, and Reuse, (pp. 23–32). Association for Computing Machinery.

30. Franco, F., et al. (2023). A systems interpretation of the software evolution laws

and their impact on technical debt management and software

maintainability. Software Quality Journal, 31(1), 179-209.

31. David B., et al., (2024) Sharing Software-Evolution Datasets: Practices,

Challenges, and Recommendations. Proc. ACM Softw. Eng. 1, FSE, No: 91, pp.1-

24.

32. Matt P. & Jonathan S. (2024) Post-Incident Action Items: Crossroads of

Requirements Engineering and Software Evolution. In Proc. of the 1st IEEE/ACM

Workshop on Multi-disciplinary, Open, and RElevant Requirements Engineering

(MO2RE 2024)., No: 21, pp.1-7.

33. Herraiz, I., et al (2013). "The evolution of the laws of software evolution". ACM

Computing Surveys. 46 (2), 1–28.

34. Lehman, M. et al., (1997) Metrics and laws of software evolution - the nineties

view. In Proceedings of the 4th International Software Metrics Symposium, 1997

(pp 20–32), Albuquerque.

35. Liguo Yu & Alok Mishra (2013) An Empirical Study of Lehman’s Law on Software

Quality Evolution, in International Journal of Software and Informatics, 7(3), 469-

481.

36. Augusto, B. et al., (2024) An Exploratory Study on the Validation of Lehman’s

Laws. In Proc of the 20th Brazilian Symposium on Information Systems (SBSI '24).

No: 47, , pp: 1–10.

37. Project Code Meter (2024). User Manual, Retrieved October 02, 2024 from

http://www.projectcodemeter.com

http://www.projectcodemeter.com/

Ajlan S. Al-Ajlan

605

Appendix

Appendix A

Statistical Labor Distribution in high and low number of hours in current and previous

versions in ten e-Learning systems

Statistical Labor Distribution

Software Last Version previous version difference Ratio

AnaXagora 28775 22040 6735 13.3

ATutor 77315 67554 9761 6.7

dokeos 343137 328061 15076 2.2

Fle3 26217 23175 3042 6.2

ILIAS 543356 490791 52565 5.1

LON-CAPA 31212 26840 4372 7.5

moodle 755725 633622 122103 8.8

OpenACS 305482 273704 31778 5.5

OpenOLAT 40330 35369 4961 6.6

Opigno 412185 367821 44364 5.7

Appendix B

Quality Measurements in high and low number of hours in current and previous

versions in ten e-Learning systems.

Quality Measurements

Software LV PV difference ratio

AnaXagora 1037 821 216 11.6

ATutor 1470 1377 93 0.3

dokeos 5161 4636 525 5.4

Fle3 1049 1011 38 1.8

ILIAS 3946 3660 286 3.8

LON-CAPA 1651 1430 221 7.2

moodle 4476 4589 -113 -1.2

OpenACS 2702 2261 441 8.9

OpenOLAT 1245 946 299 13.6

Opigno 4041 3736 305 3.9

Appendix C

Quantitative Metrics in high and low number of hours in current and previous versions

in ten e-Learning systems.

Quality Measurements

Software LV PV difference ratio

AnaXagora 137972 80637 57335 26.2

ATutor 215015 196060 18955 4.6

dokeos 1568831 1452972 115859 3.8

Fle3 125124 121905 3219 1.3

ILIAS 2386835 2093906 292929 6.5

LON-CAPA 95356 105099 -9743 -4.9

moodle 3065671 2715292 350379 6.1

OpenACS 913712 568216 345496 23.3

OpenOLAT 125751 107544 18207 7.8

Opigno 1533374 1381041 152333 5.2

Journal of Administrative and Economic Sciences • Vol 18, Issue 1 (2025)

606

Appendix D

Project Code Meter Time in high and low number of hours in ten e-Learning systems

in current and previous versions in PCMT

Project Code Meter Time

Software LV PV difference ratio

AnaXagora 1726804 1591710 135094 4.1

ATutor 4639224 4405386 233838 2.6

dokeos 20588517 19516513 1072004 2.7

Fle3 1573259 1473229 100030 3.3

ILIAS 32601748 30562010 2039738 3.2

LON-CAPA 1712082 1555432 156650 4.8

moodle 48153527 46006190 2147337 2.3

OpenACS 18329209 16732357 1596852 4.6

OpenOLAT 2420123 2244602 175521 3.8

Opigno 24731493 23227520 1503973 3.1

Appendix E

Applying Lehman’s Laws in SCPVTFe-LS

 SCPVTFe-LS

Rule Lehman’s Laws in

SCPVTFe-LS

Software

Rule1: Continuing Change 5.9 ILIAS

Rule2: Increasing Complexity 9.1 Moodle

Rule3: Self-Regulation 6.4 Moodle

Rule4: Conservation of 2.5 Opigno

Rule5: Conservation of Familiarity 2.2 Moodle

Rule6:Continuing Growth 7.4 Moodle

Rule7: Declining Quality 2.5 LON-CAPA

Rule8: Feedback System 5.9 Moodle

