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Abstract: 

In this article, a highly flexible and fast framework for estimating and exploring the 

dynamic latent dependencies among main cryptocurrency log‐returns is introduced. 

Our approach is inspired by latent factor analysis models capturing simultaneously the 

persistence of volatility clustering and the presence of leverage effect in the crypto 

market. 

A recursive quasi-maximum likelihood strategy is proposed to infer the latent cross-

sectional correlation structure of the data and then to estimate the parameters of the 

model. Our algorithm consists of recursively alternating between Kalman filtering and 

smoothing recursions and the expectation maximization (EM) algorithm. This produces 

economically interpretable estimates for the common latent factors, which can be used 

to predict the mean return vector and the return covariance matrix, particularly useful 

for stock selection and portfolio allocation problems. 

To illustrate the performance of our sequential strategy, the model is applied to daily 

log-returns of the last 5 years of the Bitcoin, Ethereum, Litecoin, Monero, Binance Coin 

and Waves currencies. The out-of-sample forecast encompassing tests show that the 

factorial approach yields better forecasts than those given by typical benchmarks. In 

terms of cumulative financial returns, our framework seems to provide the best 

performing mean-variance portfolio. 

 

Keywords: Asset allocation, Cryptocurrencies, Heteroskedastic factor analysis, EM 

Algorithm, Kalman Filter, Sequential forecasting. 

JEL Classification codes: C32 ; C38; C53; C58. 

 



Journal of Administrative and Economic Sciences • Vol 16, Issue 2 (2023) 

62 

 

1. Introduction 

Optimal portfolio allocation has received considerable attention from practitioners and 

academics for a long time. The standard approach is to find the optimal distribution of 

resources by minimizing the risk for a given level of expected return. The major 

theoretical work to generate optimal portfolios through a quadratic programming 

procedure is due to Markowitz (1959). This theory involves generally a mean parameter 

and a covariance matrix of the returns which are usually estimated based on historical 

data. From the market risk point of view, Saidane (2017, 2019, 2022a,b) and Mosbahi 

et al., (2017) implemented portfolio rules in conjunction with a variety of latent factor 

models to accurately assess the Value-at-Risk (VaR) for the Tunisian government debt 

portfolio. The major results show that, during financial crisis periods, the factorial-

based approach offers a good fit for the returns series of the exchange rate and gives 

good estimations of the VaR. From a Bayesian perspective, Putnam and Quintana 

(1994) and Quintana and Putnam (1996) implemented different portfolio strategies for 

fixed income securities and futures contracts in equity index and currency markets 

respectively. They use the predictive variance-covariance matrices calculated with 

discount methods to find the optimal portfolios. 

The methodology in this paper is based on latent factor time-varying volatility models 

and is developed in the context of cryptocurrency market. For the inference of the latent 

correlation structure, we have implemented in a first time a modified version of the 

Kalman filter to obtain the best-filtered estimates of the common factors. Then, we used 

the Expectation-Maximization (EM) algorithm for the parameter’s estimation. From a 

statistical perspective, our estimation strategy seems to be intuitive, reliable and 

numerically efficient. 

Based on these models, we developed a sequential nonlinear forecasting strategy to 

predict the time-varying covariance matrices of the different crypto portfolios. The 

predicted mean return vectors and return covariance matrices are then used to obtain 

the optimal allocations of each cryptocurrency inside the portfolio. For model 

comparisons, we used out-of-sample predictions obtained from other alternative models 

- such as the simpler, widely used, dynamic variance-matrix discounting method 

(Aguilar and West, 2000); the naïve forecasting method based on the historical average 

of the available data; the mixture of probabilistic factor analyzers (Mosbahi et al., 2017) 

and the Gaussian state-space model (Saidane, 2006). 

The rest of this paper is structured as follows. In section 2, we provide more concise 

formulations for the latent factor time-varying volatility model. A detailed state space-

based inferential procedure for the latent factors structure is also given. Then, we 

present our EM algorithm to estimate the model’s parameters and the latent state 

variables. The accuracy of our proposed sequential forecasting approach will be 

evaluated against the most competitive benchmarks in section 3. Then we discuss in 

section 4 the performance of the different sequential allocation strategies using 

cryptocurrency data. Finally, we conclude the paper with some final remarks and 

suggest the directions of the possible future research. 
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2. The Latent Factor Volatility Model 

The model we consider throughout this paper is a dynamic generalization of the 

discrete-time standard factor analysis model. In this specification, we denote the price 

of the k-th asset in the portfolio at time t by ���.1 For each � = 1, … , 	, we compute the 

log-return of the different assets 
�� = log����/������ for all � = 1, … , �. Then, we 

assume a linear relationship between the log-returns and a small number of q latent 

factors. This framework, called discrete-time latent factor volatility model (LFVM), is 

defined by: 
� = Γ�� + ��,                                                        �1� 

where 
� is the �� × 1� log-return vector of the crypto portfolio at time t, Γ denotes the �� × �� matrix of factor loadings (called also the pattern matrix) and ��, the q-vector of 

common latent factors at time t, following the multivariate normal distribution: ��~��0, Φ��,                                                 (2) 

where 0 denotes the q-mean vector and Φ� the diagonal covariance matrix of dimension �� × �� of the common latent factors ��. The common variances (diagonal elements of Φ�) follow generalized quadratic autoregressive conditionally heteroskedastic 

processes of order 1, GQARCH(1,1). In this case, the l-th common variance at time t is 

defined as follows: � ,� = !", + !�, � ,��� + !#, � ,���# + !$, � ,���                   (3) 

Assuming that !�, , !#, > 0, the impact of a negative shock (� ,��� < 0) on the common 

volatility � ,� is lower than the impact of a positive shock (� ,��� > 0). 

Lastly the p-vector of specific factors can be formulated using the multivariate normal 

distribution: ��~��', Σ�,                                               (4) 

where ' denotes the mean vector of dimension p and Σ denotes the diagonal covariance 

matrix of the p specific factors. 

To guarantee the common variance stationarity and positivity, some restrictions on the 

GQARCH parameters are needed, such as: !#, + !$, < 1, !", , !#, , !$, > 0 and !�, # ≤4!", !#, , ∀ , = 1, … , �. 

To ensure the identification of the factor model (1), some other restrictions are needed, 

such as: 
-.��Γ� = � and � ≥ �. We assume also the non-correlation and the mutual 

independence of the factors �� and ��. For more details on the identification problem, 

see Carnero (2004) and Saidane and Lavergne, (2011). 

2.1 Inference of the latent factors structures 

Because the common factors are unobserved, our model can be written as a dynamic 

state-space model with an observation equation: 

                                                           
1 The opening price at the first trading day is denoted by ��,". 
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� = ' + Γ�� + �� 

and a transition equation: �� = 0 ∙ ���� + ��, 

where ��|
�:���, ��:���~��', Σ� 

and ��|
�:���, ��:���~��0, Φ�� 

In this case 
�:��� = {
���, 
��#, … } and ��:��� = {����, ���#, … }, i.e. the information set 5��� available at time � − 1. 

Hence the prediction equations are given by: 7���|5���� = ��|��� = 0 

7�
�|5���� = 
�|��� = ' 

and 8-
9� ,�|5���: = � ,�|���, 

where � ,�|��� = !", + !�, � ,���|��� + !#, 9� ,���|���# + � ,���|���: + !$, � ,���|��# 

In the previous equation � ,�|��� denotes the l-th diagonal element of Φ�|��� and the l-

th diagonal element of Φ���|��� is given by: 

� ,���|��� = 8-
9� ,���|5���:, 

where the term � ,���|��� comes from the fact that 

;9� ,���# |5���: = 8-
9� ,���|5���: + ;9� ,���|5���:# = � ,���|��� + � ,���|���#  

and � ,���|��� = 79� ,���|5���: 

Using the Kalman updating routine (See, Saidane and Lavergne, 2011), we update the 

mean and the variance estimates as follows: ��|� = ��|��� + Φ�|���Γ′Ω�|����� 9
� − ' − Γ��|���: 

and Φ�|� = Φ�|��� − Φ�|���Γ′Ω�|����� ΓΦ�|���, 

where Ω�|��� = ΓΦ�|���Γ> + Σ. 

In this case smoothing is unnecessary, given the degenerate nature of the transition 

equation, so that ��|? = ��|� and Φ�|? = Φ�|�. 
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2.2 The EM algorithm 

To estimate the model parameters Θ, we consider an iterative approach using the 

Expectation Maximization (EM) algorithm (Dempster et al., 1977 and McLachlan and 

Krishnan, 2008) in conjunction with a Kalman filtering step for latent state estimation. 

At each iteration, our algorithm consists in two steps. In the E-step, we calculate the 

conditional expectation of the complete log-likelihood function with respect to the 

posterior probability of the latent variables �A, B�, given the current iteration’s 

parameter values Θ�C�. In this case, the complete log-likelihood function can be written 

as: 

ℒ�Θ|
, A� = − 	�2 log 2F − 12 G log|Σ|?
�H�  

− 12 G �
IΣ���
� − B
̃���
� − B
̃��′L − 12 G MG log � ,� + G � ,�#� ,�
?

�H�
?

�H� NO
 H�

?
�H� , 

where  
P�′ = I1|
�′L and B = I'|ΓL is the � × �� + 1� matrix of “regression” 

parameters. 

Then, in the M-step, we maximize the conditional expectation of the complete log-

likelihood function (5), and update the estimates for the unknown parameters Θ. 

Q9Θ|Θ�R�: ≃ T − 12 G log|Σ| − 12 G �
 UΣ��7 V�
� − B
̃���
� − B
̃��>|
�:?, Θ�C�WX?
�H�

?
�H�  

− 12 G G 7 Ylog � ,� + � ,�#� ,� |
�:? , Θ�C�Z                                                     �5�?
�H�

O
 H�  

These iterations will be repeated until convergence is reached. 

Given the nonlinearity of the relationships between the parameters of the common 

latent factor variances involved in the last component of equation (5), we need to 

maximize in a first time equation (5) with respect to the vector of specific means ', the 

loadings matrix Γ and the covariance matrix of specific factors Σ. Thereafter, the 

common volatility parameters can be updated via numerical maximization. 

The optimization of equation (5) with respect to the “regression” parameters matrix 

gives updated estimates for the specific means vector and the matrix of factor loadings: 

B�C\�� = MG 
�
?

�H� 79
̃�′|
�:?, Θ�C�:N MG 79
̃�
̃�′|
�:? , Θ�C�:?
�H� N��                 �6� 

Using these estimates, we can then estimate the specific covariance matrix as follows: 

Σ�C\�� = 1	 G 7^�
� − B
̃���
� − B
̃��′|
�:? , Θ�C�_                           �7�?
�H�  
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In this step, the conditional expectations in (6) and (7) can be obtained employing the 

sufficient statistics given by the Kalman filtering procedure in section 2.1. 

We note here that the filtering algorithm produces approximate conditional 

expectations because the covariance matrix Φ� is itself a function of the common latent 

factors. If we denote by 
̃�|��C�> = V1 , ��|��C�′W the conditional expectation 79
̃�′|
�:�, Θ�C�: 

and Ψ�|��C�
 the conditional expectation 79
̃�
̃�′|
�:�, Θ�C�:, we obtain: 

Ψ�|��C� = 7 bc 1 ��′�� ����′d |
�:�, Θ�C�e = M 1 ��|��C�′��|��C� Φ�|��C� + ��|��C���|��C�′N 

By using this equation, we get the updated specific means and factor loadings as 

follows: 

B�C\�� = MG 
�
̃�|��C�?
�H� ′N MG Ψf|f�R�?

�H� N��
 

and the updated specific covariance matrix as follows: 

Σ�C\�� = 1	 G U
�
�> − B�C\��
̃�|��C�
�′X?
�H�  

Following Harvey et al., (1992), we can approach the posterior distribution of the log-

return series, given the updated estimates of ', Γ and Σ as follows: 
�|
�:���, ∼ �^', Ω�|���_, 
where Ω�|��� = ΓΦ�|���Γ′ + Σ 

and Φ�|��� is the conditional expectation of Φ�, given the sequence of log-returns 
�:���, 

provided by the extended Kalman filtering procedure developed in section 2.1: Φ�|��� = hi-j^� ,�|���_ H�,…,O 

Taking these approximations, we obtain after disregarding the initial conditions, the 

following approached log-likelihood function: 

ℒ∗ = T − 12 G loglΩ�|���l?
�H� − 12 G�
� − '�′Ω�|����� �
� − '�?

�H�                    �8� 

Following Demos and Sentana (1998), in a first step we disregard the last component 

of the auxiliary function (5). After that, we optimize the remaining components with 

respect to (', Γ and Σ) via the EM algorithm. In this stage, the parameters of the 

conditionally heteroskedastic component ! = {!", !�, !#, !$} will be left unchanged 

compared to their values of the previous iteration. In a second step, the approached log-

likelihood function (8) will be maximized with respect to !, given the estimates of ', Γ 
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and Σ obtained in the first stage. To solve this optimization problem, we used in this 

step the NlcOptim R-package (see, Chen and Yin, 2019). 

2.3 Forecasting 

The expected mean of the predictive distribution of the LFVM model conditional on 

the information set at time �, 5� is given by: 7�
�\�|5�� = '�\�|� = '                                                   �9� 

and the predictive covariance matrix can be written as follows: 8-
�
�\�|5�� = Ω�\�|� = Σ + ΓΦ�\�|�Γ>                              �10� 

Within this framework, adaptive forecasting and parameter adjustment processes are 

performed simultaneously. In this case, the cryptocurrency closing prices adjusted for 

splits at the end of each trading day are incorporated in the database. The parameters of 

the model will be then adjusted based on the most recent observed database and the 

updated common latent volatility predictions (the diagonal elements of the latent factor 

covariance matrix Φ�\�|�) will be computed as follows: 

�o ,�\�|� = !", + !�, 79� ,�|5�: + !#, 79� ,�# |5�: + !$, 79� ,�|5�: 

= !", + !�, � ,�|� + !#, � ,�|�# + !$, � ,�|� 

�o ,�\#|� = !", + !�, 79� ,�\�|5�: + !#, 79� ,�\�# |5�: + !$, 79� ,�\�|5�: 

= !", + 9!�, + !#, :�o ,�\�|� 

⋮ 
and for forecasting horizons ℎ > 2, we have: 

�o ,�\r|� = !", sG9!#, + !$, :tr�#
tH" u + 9!#, + !$, :r���o ,�\�|� 

under the stationarity condition 9!#, + !$, < 1, ∀ ,:, we have also 

limr→y �o ,�\r|� ≃ !", 1 − !#, − !$,  
Given the predictions of the common latent factor variances, the predicted portfolio’s 

covariance matrix can be obtained as follows: Ω�\r|� = Σ + ΓΦ�\r|�Γ′, 
where Φ�\r|� = hi-j^� ,�\r|�_ H�,…,O 

3. Using the LFVM for cryptocurrencies prediction 

In this empirical assessment, we implement the LFVM to evaluate its performance in 

analyzing the latent dynamic correlation structure among the log-returns of six major 

cryptocurrencies. The optimal specification obtained with the Bayesian information 
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criterion, BIC (Schwarz, 1978) and other competing specifications will then be used to 

evaluate the forecasting ability of the proposed approach. All the results are obtained 

using the R programming environment for statistical computing (version 4.1). 

3.1 Data presentation and summary 

In this first application, we focus on the price indexes of six major cryptocurrencies, 

namely the Bitcoin (BTC), Ethereum (ETH), Litecoin (LTC), Monero (XMR), Binance 

Coin (BNB) and Waves currencies. Cryptocurrencies are subject to changes in price 

due to imbalance between supply and demand but do not have any natural mechanism 

that produces dividends and returns. For this reason we will assume in the following 

that their price can be modeled as a geometric random walk. Our dataset, downloaded 

from the “Coin Market Cap” website2, covers the period from 01/01/2017 to 

31/12/2021, includes 1250 daily log-returns for the cryptocurrencies expressed in terms 

of American dollars (USD). 

 

Figure 1: Time series of the daily closing prices of the different cryptocurrencies for the period 

from 1 January 2017, to 31 December 2021. 

 

Figure 1 depicts the temporal path of the daily cryptocurrency prices from January 01, 

2017 to December 31, 2021. In order to get comparisons, some prices have been 

adequately scaled. We can notice here the high volatility characterizing the crypto 

market and the phases of galloping price increases. The first big price increase wave 

started at the beginning of the second half of 2017, the big “bubble” that brought the 

Bitcoin’s price to exceed 20,000 USD for the first time, a second "bubble" in mid‐2019, 

and the most recent one has begun towards the end of 2020. 

Figure 2 plots the evolution of the log-returns at closing for the different series, 

confirming the high volatility characterizing the six cryptocurrencies and showing the 

                                                           
2 https://coinmarketcap.com/ 
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presence of volatility clustering and persistence in crypto market during this period 

(high-volatility periods are followed by high-volatility and vice versa). 

Note also that all the observed correlations between the different log-returns are greater 

than 0.5 and very high for the pairs BTC‐ETH (0.805), ETH‐LTC (0.820), BTC-XMR 

(0.752) and LTC‐XMR (0.739), showing a strong degree of comovement between 

them, during both stability and crisis periods. In this case, the partial correlations 

between the different pairs of cryptocurrencies are not so obvious to interpret, 

suggesting that the dominance of the Bitcoin does not necessarily result in a unique 

commoving driver. 

 

Figure 2: Daily log‐returns of the different cryptocurrencies based on closing prices for the 

period from January 01, 2017, to December 31, 2021. 

 

Table 1 gives some descriptive statistics of the data and reports the results of the 

D'Agostino, (1970) and Anscombe-Glynn, (1983) omnibus normality test. The results 

of the Jarque-Bera, (1980) normality test are also, given in this table. We note here that 

the Lagrange multiplier statistic consists in testing the kurtosis and skewness 

coefficients against their normal counterparts. It can be seen from the results that the 

log-returns are not normally distributed since the BTC, ETH and XMR returns exhibit 

significant negative skewness and those of the LTC, BNB and Waves currencies 

exhibits positive skewness with an excess kurtosis and a heavier tail, relative to a 

normal distribution for all the series during the full period. 
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Table 1: Summary statistics of the daily log-returns from 01/01/2017 to 31/12/2021. 

Statistic BTC ETH LTC XMR BNB Waves 

Mean 0.0016359 0.0024051 0.0011893 0.0011755 0.0046877 0.00223265 

Max 0.1875 0.2595 0. 3372 0.4119 0.6976 0.5648 

Median 0.00139 0.00110 0.00005 0.00213 0.00115 0.00071 

Min -0.3717 - 0.4235 -0.3618 -0.4138 -0.4190 -0.3856 

Std. Dev. 0.0396 0.0511 0.0054 0.0538 0.0627 0.0662 

D’Agost. test -6.35634 

(0.0000) 

-5.48774 

(0.0000) 

1.501550 

(0.1332) 

-4.2945 

(0.0000) 

20.7260 

(0.0000) 

13.8556 

(0.0000) 

A-Glyn. test 14.949 

(0.0000) 

13.5028 

(0.0000) 

13.6525 

(0.0000) 

15.207 

(0.0000) 

19.890 

(0.0000) 

16.344 

(0.0000) 

LB. test 18.399 

(0.1041) 

34.057 

(0.0006) 

24.373 

(0.0180) 

54.96 

(0.0000) 

20.488 

(0.0584) 

41.603 

(0.0000) 

J-Bera.  test 3461 

(0.0000) 

1927 

(0.0000) 

2015.3 

(0.0000) 

3824.6 

(0.0000) 

33902 

(0.0000) 

6444.6 

(0.0000) 

ARCH-LM 

test 

642.83 

(0.0000) 

528.72 

(0.0000) 

553.69 

(0.0000) 

601.24 

(0.0000) 

586.14 

(0.0000) 

567.32 

(0.0000) 

p-values of the different tests are indicated in brackets. 

 

Finally, we note that the results of the ARCH-LM test (Engle, 1982) show a significant 

ARCH effect and the existence of volatility clustering phenomena in the log-return 

series. In this case, the empirical test statistics for the different series are higher than 

the LM-critical value at the 1% significance level (p-values < 0.01), which imply that 

a quadratic GARCH (1,1) specification could give more appropriate solutions for the 

time-varying volatility which cannot be captured through linear models. 

3.2 An exploratory analysis of the latent structure of the data 

In this exploratory analysis, the uncertainty associated with the number of common 

latent factors is firstly explored. With this objective, we have examined different 

specifications using 1, 2 and 3 (standard and conditionally heteroskedastic) latent 

factors. Following Saidane (2022a,b), the BIC criterion is used and the results have 

revealed that the optimal specification for the log-return dynamics is the one with two 

common conditionally heteroskedastic latent factors. The estimation results of this 

model are given in Table 2. 
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Table 2: Estimation results of the optimal LFVM model for the period 01/01/2017 - 

31/12/2019. 

Model 

parameters 

(1e-03) 

 Currencies 

BTC ETH LTC XMR BNB Waves 

'̂ 2.3006 3.6886 1.4110 1.9141 4.3691 3.5670 Γ{ 2.0344 2.6667 2.8139 2.4231 2.5746 2.3652 

 0.0000 1.0579 1.9568 1.7648 1.5664 1.7752 Σ{ 0.3706 0.4451 0.5696 0.9859 1.5801 2.7737 

!| Factor 1 0.2014 0.1265 0.1034 0.5681  

 Factor 2 0.1672 0.1485 0.1257 0.6430  

 

On this same database we have implemented the dynamic variance-matrix discounting 

method (VD); the naïve forecasting method using the average of the available data; the 

mixture of probabilistic factor analyzers (MFA) and the Gaussian dynamic state-space 

model (SSM). The fitted models were, then used to predict the volatility of the different 

series 9}|t,�# : for periods of five days. In order to compute the realized latent volatilities, 

we have used the naive variance estimator given by the following formula: 

⎩⎪
⎨
⎪⎧}�,�# = G9
�,t − 
̅�,�:#�\�

tH�

̅�,� = 15 G 
�,t

�\�
tH�

 

In this application, we used a rolling estimation and prediction scheme. The first 750 

log-returns were used to estimate the different specifications (as illustrated in Section 

2). Thereafter, 5 predicted variances for the common latent factors were computed, as 

described in section 2.3. The weekly variance forecasts of the different series were also 

computed using the other competing models. Using the naive variance estimator, the 

realized volatility of this week was computed too. Then, the same procedure was 

repeated again after shifting the estimation windows one week towards the future. 

In order to compare the forecasting ability of competing models, we employed the 

forecast encompassing test developed by Chong and Hendry (1986). Practical 

implementations of this test, including out-of-sample forecasting comparisons using 

financial data, can be found in Thompson et al., (2015), Saidane and Lavergne (2011) 

and Clements and Harvey (2006). The basic idea behind the forecasting encompassing 

test is straightforward: we say that model ℳt  is encompassed by model ℳ�, if the last 

one can explain what ℳt  cannot explain, and the converse is not true. Thus, the 

prediction error from the correctly specified volatility model should not be significantly 

related to any other information available for the forecaster. 
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The encompassing tests consist of the following set of simple linear regressions: 9}t,�# − }|t,�# : = �� + �t,�}|�,�# + ��                                              �11� 

9}�,�# − }|�,�# : = �# + F�,t}|t,�# + ��,                                           �12� 

where 9}t,�# − }|t,�# : and 9}�,�# − }|�,�# : are the forecast errors and }|t,�# , }|�,�#  the forecasts 

obtained, respectively, from models ℳt  and ℳ� at time � and �� and �� are random 

errors. Based on these regressions we test the significance of the parameters �t,� and F�,t. 

In this case, at some confidence level, if the hypothesis H": F�,t = 0 is rejected in (12), 

but H": �t,� = 0 is not rejected in (11), then model ℳt  encompasses ℳ�. Inversely, if 

the hypothesis H": �t,� = 0 is rejected in (11), but H": F�,t = 0 is not rejected in (12), 

we say that model ℳ� encompasses ℳt . If H": �t,� = 0 in (11) and H": F�,t = 0 in (12) 

are both rejected, or not rejected we say that neither forecast encompasses the other. 

 

Table 3: The forecast encompassing p-values for the BTC, ETH and LTC data on the period 

01/01/2020 - 31/12/2021. 

  Forecast }| ,�#  from ↓ 

Currency Forecast error      

 9}|�,�# − }|t,�# : 

from ↓ 

LFVM VD MFA SSM Naive 

BTC LFVM NA 0.6712 0.2861 0.3127 0.8524 

 VD 0.0267 NA 0.0371 0.0302 0.2108 

 MFA 0.0186 0.1108 NA 0.0429 0.4211 

 SSM 0.0401 0.6320 0.1705 NA 0.5327 

 Naive 0.0115 0.1125 0.0462 0.0415 NA 

ETH LFVM NA 0.7126 0.3307 0.3854 0.7920 

 VD 0.0192 NA 0.0264 0.0298 0.4610 

 MFA 0.0208 0.3861 NA 0.0725 0.2201 

 SSM 0.0473 0.0842 0.1102 NA 0.5104 

 Naive 0.0188 0.1091 0.0483 0.0437 NA 

LTC LFVM NA 0.4831 0.4120 0.3662 0.8647 

 VD 0.0313 NA 0.0542 0.0288 0.2132 

 MFA 0.0242 0.3386 NA 0.0645 0.3873 

 SSM 0.0256 0.2304 0.0771 NA 0.5117 

 Naive 0.0101 0.1274 0.0357 0.0440 NA 
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In tables 3 and 4, we give the results of the encompassing tests. In these tables, the 

dependent (explained) variables 9}|�,�# − }|t,�# : are listed in the second column and the 

independent (explanatory) variables }| ,�# , are listed in the second row. The numbers in 

the entries of the tables denote the p-values of the different tests associated with the 

robust t-statistics computed on the regression coefficients �t,� and F�,t. We note here 

that a p-value lower than 0.05 is viewed as evidence against the null hypothesis: the 

model listed in the second column cannot encompass the model listed in the second 

row. 

 

Table 4: The forecast encompassing p-values for the XMR, BNB and Waves data on the period 

01/01/2020 - 31/12/2021. 

  Forecast }| ,�#  from ↓ 

Currency Forecast error      

 9}|�,�# − }|t,�# : 

from ↓ 

LFVM VD MFA SSM Naive 

XMR LFVM NA 0.6678 0.3273 0.3577 0.5750 

 VD 0.0305 NA 0.0424 0.0345 0.2411 

 MFA 0.0213 0.1267 NA 0.0491 0.4817 

 SSM 0.0459 0.5229 0.1950 NA 0.6091 

 Naive 0.0131 0.1429 0.0528 0.0475 NA 

BNB LFVM NA 0.4151 0.3783 0.4408 0.7053 

 VD 0.0220 NA 0.0302 0.0341 0.5273 

 MFA 0.0238 0.3416 NA 0.0529 0.2518 

 SSM 0.0341 0.0963 0.1260 NA 0.5838 

 Naive 0.0215 0.1079 0.0552 0.0499 NA 

Waves LFVM NA 0.5526 0.4713 0.4189 0.6891 

 VD 0.0358 NA 0.0620 0.0329 0.2053 

 MFA 0.0277 0.3873 NA 0.0738 0.4430 

 SSM 0.0293 0.2635 0.0882 NA 0.5853 

 Naive 0.0115 0.1343 0.0408 0.0503 NA 

 

From the results reported in these tables, we can see that the p-values of the regression 

models using forecast errors from the LFVM model are greater than the significance 

level 5% for all the cryptocurrencies. These results reveal that none of this model’ 

forecast error can be explained by other models’, which imply that the LFVM is not 

encompassed by any competing specification. On the other hand, we notice that the 
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variance predictions given by this model explain significantly the prediction errors of 

the other models. These findings justify the superiority of the proposed LFVM 

compared to the other competing models in prediction accuracy. 

At the significance level of 5%, these results show also that the MFA encompasses the 

dynamic variance discounting and the Naive forecasting methods for the BCT and ETH 

currencies. For the XMR and BNB, the variance discounting is encompassed by the 

MFA, and for the LTC and Waves currencies, the Naive forecasting method is 

encompassed by the MFA. 

We note also that the SSM encompasses the MFA for the BCT and XMR currencies. It 

encompasses the variance discounting for all the currencies and the Naive forecasting 

method for all the currencies except the Waves. The SSM is never encompassed by the 

MFA, the variance discounting and the Naïve forecasting methods. Furthermore, the 

dynamic variance discounting and the Naïve forecasting methods neither encompasses 

the other at even the 10% significance level. 

In conclusion, since the LFVM is not encompassed by any of the competing forecasts 

while every other model is encompassed at least once, we can say that the forecasting 

performance of our proposed approach is much better than that of other baseline 

methods. 

4. Dynamic portfolio allocation strategies 

In this paper, we assume that all transactions (short or long) are instantaneous and 

without any cost.  In what follows we denote by ��\� the p-vector of investment 

proportions in the different crypto assets obtained by the optimal one-step ahead 

predictive model at time t. These proportions are subject to the only constraint ��′� =1, where � is the �� × 1� column vector of ones, and the best model at time t is the one 

with the highest realized portfolio return 
�∗ = ��′
� over the allocation period. 

The Markowitz approach to portfolio allocation involves the general mean-variance 

optimization at each point of time. This framework requires estimates of the expected 

return of each cryptocurrency, as well as the predicted covariance matrix of returns. All 

these predictions may be obtained from our LFVM and from the other competing 

models. 

For the implementation of our sequential strategy, the one-step ahead predictions of the 

mean vectors and covariance matrices of the log-return vectors 
�, denoted here by '�\�|� and Ω�\�|� can be obtained from equations (9) and (10). 

Our sequential optimization strategy seeks at each time � the minimization of the 

portfolio’s one-step ahead variance for a target expected return �. In this situation, the 

optimal portfolio for the period � + 1 will be selected as the one with the minimum 

predicted one-step ahead variance ��\�′Ω�\�|���\� subject to a given expected return ��\�′'�\�|� = � and the condition that ��\�′� = 1. The set of portfolios with the 

highest expected return for a given risk (variance) level is called the efficient frontier. 

We can demonstrate that the efficient frontier is the solution ��\����
 that minimizes �# ��\�′Ω�\�|���\� over the constraint set, (Markowitz, 1959). The well known solution 
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to this quadratic programming problem through Lagrange multipliers is given by the 

mean-variance efficient portfolio, 

��\���� = Ω�\�|��� 9-'�\�|� + ��:, 

where - = �′Ω�\�|��� � 

and � = '�\�|�′Ω�\�|��� � 

with 

� = 9�� − '�\�|�:h  

and 

h = 9�′Ω�\�|��� �:9'�\�|�′Ω�\�|��� '�\�|�: − 9�′Ω�\�|��� '�\�|�:#
 

Two other standard portfolio allocations can be derived in the same way. First, the 

strictly risk-averse allocation strategy which just depends only on the estimation of the 

variance-covariance matrix, namely, 

��\����� = 9�′Ω�\�|��� �:��Ω�\�|��� � 

and second, the so called target-independent allocation strategy implemented on the 

boundary of the efficient frontier: 

��\���C� = 9�′Ω�\�|��� '�\�|�:��Ω�\�|��� '�\�|� 

4.1 Special Portfolio Strategies 

There are of course different varieties and extensions of the three basic strategies 

presented above as a result of including or removing constraints. For instance, the 

restriction that ��\�′� = 1 forces the decision maker to constrain his short or long 

positions in the specified market. However, there are many situations when the optimal 

decision would be to take your money to the bank in, for example, high volatility 

situations. Consider then allocation strategies without any restrictions on the vector ��\�, allowing for short and long positions across the cryptocurrencies without regard 

to resources. This characterizes the practical working environment in the global 

investments in major financial institutions as reported by the previous work of Quintana 

and Putnam (1996) on discounting models. The mean efficient portfolio with expected 

return target �, under an unconstrained strategy is given by: 

��\��∗�� = �Ω�\�|��� '�\�|�, 

where 

� = �9'�\�|�′Ω�\�|��� '�\�|�: 
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A different situation arises in the implementation of portfolios in higher dimension 

which usually result in extreme weights on particular assets. A traditional strategy in 

these cases is to introduce upper and lower constraints in the optimization problem, ,�,� < -�,� < ��,�. Typical choices of the bounds are ,�,� = 0 reflecting the fact that no 

short sales are allowed and a constant upper bound ��,� = �". Consequently, the higher 

level of �" the more aggressive the portfolio in the sense of the few number of securities 

held and the higher tracking error of the portfolio. The focus in this paper is on the four 

basic portfolio strategies: the mean-variance efficient, the target independent, the 

strictly risk-averse allocation and the unconstrained mean efficient portfolio with 

expected return target �. These strategies will be used in the next paragraph mainly for 

model comparisons in the crypto portfolio allocation example. 

4.2 Dynamic Portfolio Comparisons for Cryptocurrencies 

Following the approaches by Levy and Lopes (2021a), Leon and Reveiz (2010), 

Aguilar and West (2000) and Quintana and Putnam (1996), model comparisons are 

performed with a clear focus on the one-step ahead predictive performance of our latent 

factor volatility model in the context of sequential portfolio allocations. Our approach 

is able to sequentially update the model parameters and learn the time-varying 

volatilities. Levy and Lopes (2021b) have suggested a similar approach, using a 

dynamic risk factor model, to scale multivariate return volatility predictions up to high-

dimensions. 

The comparisons are focused here on the predictive accuracy of our model and the other 

competing models. All the models are fitted to the daily log-returns of the BTC, ETH, 

LTC, XMR, BNB and Waves currencies. In a first time, we divided our dataset into 

training set and prediction set. The training, set contains 750 observations (the log-

returns of the different cryptocurrencies over the period 01/01/2017-31/12/2019). Then, 

we used the different allocation strategies to evaluate the sequential (one-step ahead) 

predictive performance of our model on the remaining 500 observations covering the 

period 01/01/2020-31/12/2021. The performance of our methodology (in terms of 

cumulative financial returns) is evaluated here by using the one-day rolling window 

method with a window size of 750 trading days (see Saidane, 2022a). 

In order to compare the forecasting performance of the different models, Figure 3 

graphs the paths of the cumulative returns, over the prediction set period, given by the 

weights of the different sequential allocation strategies, using the optimal LFVM, with 

two conditionally heteroskedastic common latent factors; the dynamic variance-matrix 

discounting method with the optimal discounting coefficient � = 0.95; the optimal 

MFA, with two common standard factors and two mixture components and the optimal 

dynamic SSM, with two latent state variables. In this figure, each panel corresponds to 

a specific investment strategy: the constrained mean-variance efficient portfolio �����
 

and the target-independent allocation ����C�
 strategy, with the expected target daily 

return � = 0.002  (in the top left and top right panels). The strictly risk-averse 

allocation strategy ������
 and the mean efficient unconstrained portfolio ���∗��

 with the 

expected target daily return � = 0.002 (in the bottom left and bottom right panels), 

respectively. 
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As can now be seen from Figure 3, the optimal time-varying volatility portfolio model 

clearly dominates (in terms of cumulative returns) all the other competing models both 

in the case of constrained or unconstrained sequential allocation strategies. 

 

 

Figure 3: Cumulative returns under different dynamic portfolios, expressed in percentage terms 

(100 times their real values). 

 

From this figure and the results of the encompassing tests presented in the previous 

section, we can conclude that the changes in volatility are better captured by the LFVM. 

The second ranked model is the dynamic SSM. These models behave closely the same 

in the computation of portfolio weights. They proceed to distinctly dominate all the 

other competing models in terms of cumulative returns for the different strategies, 

except in the case of the constrained optimal mean-variance allocation strategy where 

the MFA dominates the SSM. 

In the case of the unconstrained allocation strategy, we can see again from Figure 3 a 

clear similarity in portfolio performance between the LFVM and the SSM. The main 

differences appear during high or increasing volatility periods, where the LFVM can 

markedly capitalize in terms of short-term gains compared to the dynamic SSM. The 

responsiveness of the conditionally heteroskedastic latent factor model leads in the 

short term to marked fluctuations in the crypto portfolio weights that the unconstrained 

strategies can significantly capitalize on, which can, thereafter, affect persistently the 

global cumulative returns. 
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Figure 4: Dynamic weights �����
 for the mean-variance efficient portfolio using the optimal 

LFVM. 

 

In figures 4-7, we depict the weight trajectories of the different sequential allocation 

strategies, using only the optimal LFVM, with the expected target daily return � =0.002 for the constrained and unconstrained mean-variance efficient portfolios. At each 

point of time, the plotted values are the relative weights of the different 

cryptocurrencies in the portfolio. The relative weight is the real value of the coefficient 

multiplied by 100 and divided by the sum �′��. These figures permit to compare 

directly the unconstrained weights with those given by the constrained allocation 

strategies, where the relative values coincide with the real ones. 

We can see here the marked fluctuations in the portfolio structures as a response to the 

structural changes in volatility dynamics during the entire period. These fluctuations 

have been translated into a long-term persistence effect on the cumulative returns as 

shown in Figure 3. 

It can be seen from Figure 4 that the allocations for the efficient constrained mean-

variance strategy have been completely and quickly shifted to long positions on the 

LTC and the greatly associate XMR, while simultaneously taking quite completely 

short positions on the BNB and ETH currencies. We note here that, the first element of 

the vector ' is always positive, implying a positive expected return on the BTC around 

the end of 2019. This is reflected in the portfolios across the time period up to the end 

of 2021 through positive portfolio weights on the BTC; that is, the portfolios are long 

on the Bitcoin (characterized on average by low idiosyncratic risk during this period). 
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Figure 5: Dynamic weights ����C�
 for the target-independent allocation derived at the boundary 

of the mean-variance efficient frontier using the optimal LFVM. 

 

Figure 5 in connection with the long positions on BTC driven by the positive element 

of the mean vector ', shows that, both constrained and the target-independent allocation 

derived at the boundary of the mean-variance efficient frontier portfolios adopt 

corresponding short positions on the LTC and ETH, and the portfolio weights on BTC 

and the pair (LTC,ETH) essentially offset each other. 

 

Figure 6: Dynamic weights ������
 for the strictly risk-averse minimum variance portfolio using 

the optimal LFVM. 
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From Figure 6, it can be noted that one of the most remarkable features of the portfolio 

weights paths given by the strictly risk-averse minimum variance strategy, is the very 

low weights associated to the LTC and Waves currencies during most of the study 

period. The components of the mean vector ' indicate, as is expected on economic 

grounds, an average return very close to zero for the Waves currency. Furthermore, we 

note that during the periods of very high idiosyncratic risk, the LTC weights tend to 

zero, which reflects an increase in the risk aversion index associated with this currency. 

 

Figure 7: Dynamic weights ���∗��
 for the mean efficient portfolio with expected return target � = 0.002, under an unconstrained strategy, using the optimal LFVM. 

 

Comparison of figures 5 and 7 shows almost identical trajectories for the portfolio 

weights given by the target-independent allocation strategy and those given by the 

unconstrained strategy. We note here, as evidenced by the total investment �′���∗��
 

trajectories given in Figure 8, that the unconstrained strategies adopt overall long 

positions during the study period. This is highly affected by the positive mean and the 

resulting long positions for the BTC, BNB and Waves currencies reflect the response 

of the portfolio to the generally low volatility levels where compared to the target mean 

return, during the study period. 

From Figure 8, we can clearly observe the relatively high fluctuations characterizing 

the temporal path of the sum �′���∗��
 for the LFVM, during high volatility periods. It 

can be seen also from this figure that the total investment is decreased significantly 

during 2021: the considerable changes in volatility led to anticipate high levels of risk 

and as a result, the total amount invested in the market diminished significantly. 
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Figure 8: Total investments �′���∗��
 with � = 0.002 in the unconstrained portfolios. 

 

We note finally that, during the study period, while the dynamic SSM gives cumulative 

returns more or less close to those obtained by the LFVM, the portfolio weights 

obtained using the time-varying volatility structure are relatively more stationary over 

time. It is interesting to note also that the LFVM takes into account the time-varying 

cross-correlations between the cryptocurrency log-returns and gives more stationary 

portfolio’s weight trajectories than those given by all the other competing models. 

5. Conclusion 

Asset allocation in a high dimensional mean-variance framework require a precise 

estimation of the covariance matrix of the portfolio’s returns. The aim of this paper is 

to develop a quick and flexible multivariate conditionally heteroskedastic framework 

for price dynamics in order to make better predictions for dynamic crypto portfolio 

allocation. 

Our studies demonstrate the feasibility of sequential predictions of the future volatility 

patterns based on the proposed conditionally heteroskedastic latent factor model. These 

predictions are computationally accessible with moderate computational resources, and 

our results showed that satisfactory predictions could be achieved for different 
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here supports the potential use of the proposed latent factor volatility model in the 

context of crypto-market research, where a conditionally heteroskedastic specification, 

taking into account the time-varying covariance structure, can improve the prediction 

performance and the portfolio decision making process, particularly in the case of 

constrained mean-variance allocation strategies. In the context of the unconstrained 

0.2

0.4

0.6

0.8

1.0

LFVM

12/2019 06/2020 12/2020 06/2021 12/2021

-0.2

-0.1

0.0

0.1

0.2

VD

12/2019 06/2020 12/2020 06/2021 12/2021

-0.10

-0.08

-0.06

-0.04

MFA

12/2019 06/2020 12/2020 06/2021 12/2021

0.3

0.4

0.5

0.6

SSM

12/2019 06/2020 12/2020 06/2021 12/2021



Journal of Administrative and Economic Sciences • Vol 16, Issue 2 (2023) 

82 

 

allocation strategies, the dynamic Gaussian state space model seems to works well, 

even, if it is finally dominated by the latent factor volatility model in terms of 

cumulative returns. 

We think strongly that in the longer-term forecasting horizons and in more general 

models, taking volatility clustering into account and allowing for the possibility of 

regime changes in the intra-portfolio's latent correlation structure the dominance of the 

factorial approach will be much clearer. In this specification, which constitutes our 

future research, we will combine following Saidane and Lavergne (2007, 2009), 

conditionally heteroskedastic latent factor models with nonhomogeneous hidden 

Markov models, by relaxing the assumptions of constancy of the transition 

probabilities. We can also incorporate dynamic regressions on relative interest rates, 

energy prices and other possibly econometric indicators in the model. This can provide 

a more tractable way to handle heteroskedasticity and latent spatial-correlations in a 

multivariate framework, and can thereafter yield more accurate forecasts for crypto 

portfolio allocation, especially during crisis periods. 
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