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Abstract: 

Nowadays, video-on-demand (VoD) applications are becoming one of the tendencies 

driving vehicular network users. In this paper, considering the of ve-hicular network 

opens up to different types of communications in order to meet the needs of the wide 

variety of new applications envisaged within the framework of the Intelligent Transport 

System (ITS). In this work, we seek to establish a list of possibilistic concepts in order 

to efficiently identify the strict parameters of ur-ban VANET networks. To this end, we 

use linear optimization under constraints. We apply in parallel to this first proposition 

a minimization of a validated quadrat-ic criterion with the appearance of fuzzy least 

squares. To arrive at a quadratic resolution under constraints, different distances were 

managed and various con-straints were introduced in the optimization problem. We 

have shown that the da-ta independent criterion in urban VANETs can overcome the 

failure problem in terms of robustness. To assess the comparative effectiveness of our 

solutions, many experiments are carried out. The obtained results showed that the 

proposed identification scheme will allow an increase in the performance of Urban 

VANET networks with different load conditions. 

 

Keywords: Vehicular network, SVM, UPSO, regression, optimization, parameters 

identification. 
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1. Introduction 

For several years, research work on regressive models with fuzzy parameters (fuzzy 

regression) has multiplied, and it is now very difficult to establish an exhaustive list of 

all the strategies developed. The basic idea was to exploit possibilistic concepts to 

identify the fuzzy events of VANET networks by minimizing the dispersion of the 

coefficients. A linear optimization program under constraints then translates the 

strategy implemented to achieve this identification. The constraints are dictated by the 

realization of inclusion of the outputs observed in those predicted by the model (known 

as the possibility model). 

In parallel with these works, the idea of identification of continuous behavior of 

the vehicle nodes in a VANET environment based on the minimization of a quadratic 

criterion materializes with the appearance of the fuzzy least squares [1]. Because of its 

great ability to adapt and integrate with the most precise identification methods, it 

seems quite natural to us to exploit the idea of the least-squares in our uncertain VANET 

network context. Indeed, the underlying guiding idea is to minimize the quadratic error 

of the output, expressed in terms of the distances between the fuzzy intervals (observed 

outputs and expected outputs). In this context, different distances were used as criteria 

to be optimized (diamond distance, Ming distance, ...) [2]. 

However, if this method often gives relevant results, thanks to its principle, it is 

often subject to the violation of the inclusion constraint. In this context, to remedy these 

problems, constraints have been introduced into the optimization problem to lead to a 

quadratic programming methodology under constraints [3]. Our job is to perform an 

experimental analysis of the differences that exist between conventional approaches in 

terms of the robustness of VANET systems. To do this, we have chosen to approach 

the problem practically by relying on simulations making it possible to highlight the 

sensitivity of each method at any modification of the observed data, or a change in the 

data learning area. 

The rest of this paper is organized as follows; section 2 outlines a literature review 

on the fuzzy logic approach applied in the VANET environment. Section 3 describes 

our adaptation Fuzzy Support Vector Regression for VANET networks (FSVRNET). 

In section 4 we propose a new fuzzy identification approach based on Support Vector 

Fuzzy Regression (FSVRNET) and the Unified Particle Swarm Optimization (UPSO). 

Finally, an analysis of the experience study is presented in section 5. Section 6 

concludes the paper. 

2. Review of related work 

Support Vector Machines (SVM) offer the possibility of performing a linear regression 

to no longer predict a class, but any function [4]. Assuming that the functions with 

values in IR, then N solutions have been provided, see in [5] a simple regression is 

performed on each of the dimensions. With functions of belief or membership 

functions, the normalization constraints require taking into consideration the different 

dimensions of the function to be predicted independently and jointly [6]. In [7], the 

authors have proposed a regression on triangular fuzzy numbers, it is thus placed in the 

hypothesis of multiple regression, but the essential difference with the proposed 
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approach is manifested in the conditions on the belief functions and the membership 

functions. 

To meet various network resource requirements, VANET networks then require 

efficient approaches for scalable resource allocation. In a VANET environment and to 

meet the resource requirements, the authors of [8] presented the H-FLGA approach 

(Hybrid Fuzzy Logic Approach which expresses five ways of optimizing network 

resources.  

For efficient transmission of various data in a VANET environment, a self-

adaptive geographic routing has been proposed in [9], with a hybrid reactive mechanism 

(SOGR-HR). The authors of [9] also proposed a self-adapting geographic routing, but 

with a geographic reactive mechanism (SOGR-GR). 

The authors of [10] introduced "MARS", a system based on machine learning 

for the selection of traffic in urban VANET networks. A widely applied K-means 

machine learning algorithm is adopted by MARS to predict the better transmission 

capacity of selected paths. Another mechanism named FLGR based on fuzzy logic has 

been proposed in [11] for transmission control with a minimum delay of security 

messages. FLGR uses fuzzy logic and several parameters to select the best vehicle node 

that will act as the relay node.  

One of the promising technologies in complex and dynamic contexts is fuzzy 

logic [12]. To improve the quality of data transmission (DTQ), the authors of [13] 

proposed a new data transmission strategy based on fuzzy logic and machine learning 

algorithms to optimize the selection of nodes relay. To solve the problems of the 

dynamics of the VANET, each RSU will estimate the movements of the vehicle nodes 

and their directions using the KNN algorithm and a machine learning system (MLS). 

3. Fuzzy Support Vector Regression for VANET networks (FSVRNET) 

In the systems modeling where the available information is uncertain as in the case of 

the VANET environment, we are dealing with a fuzzy approach to the system 

considered. A fuzzy function whose parameters represent fuzzy intervals expresses the 

system [14]. In the rest of this section, we integrate the main concepts of fuzzy logic in 

the regression model with SVMs in the VANET environment. In the support vector 

regression model, the parameters were set so that the desired results, the components 

of the weight vector, and the bias term are fuzzy numbers. To simplify the calculation, 

we will assume that the fuzzy parameters are symmetric triangular fuzzy numbers 

(NFTS) [15]. 

3.1 Quadratic function (QF) applied to VANET networks 

First, the bias term and the weight vector components used in the regression function 

model are NFTS. Given the fuzzy weight vector FW𝑖 = (m𝑖 , 𝑟𝑖), where 𝑚 the midpoint, 

and 𝑟 the radius, likewise the fuzzy bias term 𝐹𝑏 = (𝑒, 𝑘), where, 𝑒 midpoint, and 𝑘 

the radius. The model is given by: 

𝑊 = FW1y1 + FW2y2 +⋯+ FW𝑛y𝑛 = 〈FW. y〉 + 𝐹𝑏 

The following membership function defines the model: 
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𝜎𝑊(𝑥) = 1 −
|𝑥 − (〈𝐹𝑊. 𝑦〉 + 𝑒)

〈𝑟. |𝑦| + 𝑘〉
,      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 ≠ 0                     (1) 

Such as 𝜎𝑊(𝑥) = 0, when 〈r. |y| + k〉 ≤ |𝑥 − (〈FW. y〉 + 𝐹𝑏)| 

Then, we process the desired fuzzy output in the regression task of our VANET system. 

The observed data noted 𝑊�̃� = (𝑥𝑖, b𝑖), are also fuzzy values, where  b𝑖 the radius and 

𝑥𝑖 is the midpoint. 

We then distinguish the membership function 𝑊�̃� as follows: 

  𝜎𝑊�̃�(𝑥) = 1 −
|𝑥 − 𝑥𝑖|

b𝑖
                                                    (2) 

To formulate our fuzzy linear regression model in our VANET environment, the 

following points were retained: 

1) The data can be represented by a fuzzy linear model Wi
∗ = 〈FW∗. y

i
〉 + Fb

∗
, given y

i
, 

Wi
∗ can be obtained as follows: 

𝜎𝑊𝑖
∗(𝑥) = 1 −

|𝑥 − (〈𝐹𝑊. 𝑦𝑖〉 + 𝑒)

〈𝑟. |𝑦𝑖| + 𝑘〉
                                   (3) 

2) The adjustment degree of the estimated fuzzy linear model. 𝐖𝐢
∗ = 〈𝐅𝐖∗. 𝐲

𝐢
〉 + 𝐅𝐛∗ for 

the observed data Wĩ = (xi, bi), is measured by the index g i̅, which maximizes g, 

subject to Wĩ
g
⊂ Wi

∗g
, with: 

𝑊�̃�
𝑔
= {𝑥|𝜎𝑊�̃�(𝑥) ≥ 𝑔},𝑊𝑖

∗𝑔
= {𝑥|𝜎𝑊𝑖

∗(𝑥) ≥ 𝑔}                       (4) 

Which are sets by 𝑔 − 𝑐𝑢𝑡. The optimum adjustment degree for all data is defined by, 

𝑚𝑖𝑛𝑗| 𝑔𝑗̅̅̅|. 

3) The imprecision of the linear fuzzy model is defined by: 
1

2
‖r‖2 + k. 

4) The control term of the fuzzy linear model capacity is defined by: ‖χ‖2. 

Solving the regression problem gives the fuzzy weight vector FW = (𝜒, 𝑟) and the 

fuzzy bias term Fb = (𝑒, 𝑘), such as the adjustment degree between the estimated 

output 𝑊𝑖
∗g

 and the output desired 𝑊�̃�
𝑔

, is a given constant ℎ for all 𝑖, where ℎ selected 

by the user, as the adjustment degree of the fuzzy linear model. The 𝑔�̅� value can be 

obtained from: 

𝑔�̅� = 1 −
|𝑥𝑖 − (〈𝐹𝑊. 𝑥𝑖〉 + 𝑒)

〈𝑟. |𝑥𝑖| + 𝑘〉 − 𝑏𝑖
                                           (5) 

Which is the same as that obtained by Škrabánek [16]. Our regression problem is, 

therefore: 

𝑚𝑖𝑛
𝜒,𝑟,𝑒,𝑘,𝜂𝑖

𝛹 =
1

2
‖𝜒‖2 + 𝛫 (

1

2
‖𝜒‖2 + 𝑘) + ℛ∑𝜂𝑖

𝑁

𝑖=1

                   (6) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑔�̅� ≥ ℎ          with 𝑖 = 1,… ,𝑁 
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Such that,, ‖𝜒‖2 characterizes the model complexity, and 
1

2
‖𝜒‖2 + 𝑘 characterizes the 

imprecision model. 

More imprecision in the result of the regression generally implies more imprecision in 

the linear fuzzy regressive model. Κ represents the difference parameter chosen by the 

decision-maker. The value of ℎ determines the lower bound of the establishment of the 

linear fuzzy model, and 𝑔�̅� is the adjustment degree of the estimated linear fuzzy 

model 𝑊𝑖
∗ = 〈FW∗. 𝑦𝑖〉 + Fb

∗ for the fuzzy data of the desired output 𝑊�̃� =

(𝑥𝑖, b𝑖). {𝜂𝑖}𝑖=1,2,…,𝑁 are sets of variables that measure the excess quantity of the 

variation in stresses for each point, where ℛ is a fixed penalty parameter chosen by the 

user, a greater value of ℛ corresponds to assigning a higher penalty to errors [16]. 

More precisely, according to (5), our problem consists in finding the fuzzy weight 

vector FW∗ = (𝜒, 𝑟) and the fuzzy bias term Fb∗ = (𝑒, 𝑘), which is the solution of the 

problem of following quadratic function: 

𝑚𝑖𝑛
𝜒,𝑟,𝑒,𝑘,𝜂𝑖

𝛹 =
1

2
‖𝜒‖2 + 𝛫 (

1

2
‖𝑟‖2 + 𝑘) + ℛ∑(𝜂1𝑖 +

𝑁

𝑖=1

𝜂2𝑖)                   (7)  

The difference between the support vector fuzzy regression technique and the simple 

regression model with SVM is that the first technique looks for a linear fuzzy function 

with fuzzy parameters that have at least the degree of fit ℎ of the desired fuzzy targets 

of all data. On the other hand, the second model searches for a linear function which 

has at most 𝜖 of variation compared to the targets obtained 𝑥𝑖 for all the data. 

3.2 Adaptation of a fuzzy nonlinear regression model to VANET environment  

There are only a few papers on fuzzy nonlinear regression [17][18]. This model type 

generally assumes the underlying model and deal with the estimation procedures of 

some particular models such as linear, polynomial, and exponential. However, we 

believe that these methods are dependent on an impractical model. We will use the idea 

of SVM for simple nonlinear regression [19] in our VANET network system. The basic 

idea is to change the data space. The nonlinear transformation of the data in a urban 

VANET environment can allow a linear representation of the observed data 𝑦𝑖 by Ω: =

ℛ𝑛 → ℱ. An essential property of the proposed algorithm is that it would depend only 

on the data by the interior products in ℱ, on the functions of the form 〈Ω(𝑦𝑖). Ω(𝑦𝑗)〉 

and 〈Ω(|𝑦𝑖|). Ω(|𝑦𝑗|)〉. 

          The form of the function Ω does not need to be known because it is implicitly 

defined by the choice of the kernel function,  𝒦(𝑎, 𝑏) = 〈Ω(𝑎). Ω(𝑏)〉. Therefore, it 

suffices to know that 𝒦(𝑦𝑖, 𝑦𝑗) = 〈Ω(𝑦𝑖). Ω(𝑦𝑗)〉 𝑎𝑛𝑑 𝒦(|𝑦𝑖|, |𝑦𝑗|) =

〈Ω(|𝑦𝑖|). Ω(|𝑦𝑗|)〉instead of explicitly defining Ω(. ). 

Thus, by substitution 〈𝑦𝑖. 𝑦𝑗〉 and 〈|𝑦𝑖|. |𝑦𝑗|〉 with 𝒦(𝑦𝑖, 𝑦𝑗) and 

𝒦(|𝑦𝑖|, |𝑦𝑗|) respectively, we obtain the dual quadratic optimization problem given by 

the following function. Here, it should be noted that the constraints are not modified 

[20]. 
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∑(𝛽1𝑖 − 𝛽2𝑖)

𝑁

𝑖=1

= 0,∑(𝛽1𝑖 + 𝛽2𝑖)

𝑁

𝑖=1

≤
𝒦

1 − ℎ
           𝛽1𝑖, 𝛽2𝑖 ∈ [0, ℛ]             (8) 

We can arrive at various types of learning machines, based on kernel functions and 

arbitrary nonlinear regression functions in the input space of our VANET system. The 

fuzzy nonlinear regression function is defined by the following membership function: 

𝜎𝑊∗(𝑥) = 1 −
|𝑥 − ∑ (𝛽1𝑗 − 𝛽2𝑗)

𝑁
𝑗=1 𝒦(𝑦, 𝑦𝑗) + 𝑒|

(1 − ℎ)
𝒦

∑ (𝛽1𝑗 + 𝛽2𝑗)
𝑁
𝑗=1 𝒦(|𝑦|, |𝑦𝑗|) + 𝑒′

                   (9) 

With a projection of the data in a space of important dimensions, the kernel functions 

offer alternative solutions to increase the computational capacity of the model. In its 

dual form, the fuzzy linear regression model can perform these measurements perfectly 

and the adjustable variables do not depend on the number of attributes used [21]. 

Learning algorithms can generally be detached from the constraints of the application 

domain. It must be programmed for the design of a suitable kernel function. 

3.3 Application of FSVRNET to VANET environment 

To evaluate the performance of our FSVRNET model to the VANET environment, we 

assume the data drawn from Tanaka and Lee [22] to apply it to VANET. Note here that 

the representation of intervals by their midpoint, radius has been adopted. The data set 

presented therefore comprises M = 8 samples. We assume the fuzzy linear regression 

model as follows: 𝑊(𝑥) = 𝐹𝑊 𝑥 + 𝐹𝑏 

We have set the parameters ℎ = 0.5, ℛ = 15, and 𝒦 = 25. We obtain the following 

regressive model: 

         We apply the method of nonlinear fuzzy regression by SVM to analyze the data 

which seems appropriate for this model. For the estimation of the fuzzy nonlinear 

model, we use in this case a polynomial kernel of degree three. 

          For nonlinear fuzzy SVM regression (FSVR), we do not get good results in the 

case of an RBF (Radial Basis Function) kernel. So we use in this case almost the same 

technique, but with unsymmetrical triangular fuzzy numbers. 

4. Fuzzy identification approach based on FSVRNET and Unified Particle 

Swarm Optimization (UPSO) 

In this section, we propose a new fuzzy identification approach based on Support 

Vector Fuzzy Regression (FSVRNET) and the Unified Particle Swarm Optimization 

(UPSO) [23] algorithm. 

First, the FSVRNET model is chosen to facilitate the identification model in a VANET 

environment. Then, to optimize the hyper-parameters essential for the FSVRNET 

model, a global UPSO optimizer is implemented. Applying the proposed model to 

different data provided optimal results. First, we will present the techniques used in our 

new approach to explain the different stages of the latter. 

          In this section, we briefly discuss Support Vector Fuzzy Regression (FSVR) by 

Hong et al [24], which uses unsymmetrical triangular fuzzy numbers. To do this we 



Bechir Alaya ▪ Anis Omri ▪ Fahad Alaieri 

91 
 

need some preliminaries. Let 𝒜 = (𝓂, 𝑟𝐿 , 𝑟𝑅) an asymmetric triangular fuzzy number. 

Knowing that, 𝑟𝐿 , 𝑟𝑅 the left and right radius, respectively, and 𝓂 is the modal value of 

𝒜. We use the distance from Diamond 𝑑 for unsymmetrical triangular fuzzy numbers. 

4.1 Linear fuzzy regression model 

Given a set of data pairs (𝑥𝑖, 𝑌𝑖), 𝑖 = 1,… ,𝑁, where the outputs 𝑌𝑖 are symmetric 

triangular fuzzy numbers and 𝑥𝑖 are net numbers. 

Let the fuzzy weight vector 𝑊(𝑤1, 𝑤2, … , 𝑤𝑀), where, 𝑤𝑗 = (𝓂𝑤𝑗
, 𝑟𝐿𝑤𝑗 , 𝑟𝑅𝑤𝑗), 𝑗 =

1, … ,𝑀, belongs to the set of unsymmetrical triangular fuzzy numbers, the fuzzy bias 

term 𝐵 = (𝓂𝐵, 𝑟𝐿𝐵 , 𝑟𝑅𝐵) ∈ 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑁𝐹𝑇. 

We consider the following fuzzy regression model:𝑓(𝑥) = 〈𝑊, 𝑥〉 + 𝐵 = 𝑤1𝑥1 +⋯+

𝑤𝑀𝑥𝑀 + 𝐵    

We define‖𝑊‖2 = ‖𝑚𝑤‖
2 − ‖𝑚𝑤 − 𝑟𝐿𝑤‖

2
+ ‖𝑚𝑤 + 𝑟𝑅𝑤‖

2
 , 

with 

𝑚𝑤 = (𝑚𝑤1 , 𝑚𝑤2 , … ,𝑚𝑤𝑀), 𝑟𝐿𝑤 = (𝑟𝐿𝑤1 , … , 𝑟𝐿𝑤𝑀)                  (10) 

We use the Lagrange method to resolve this optimization problem, we derive the 

Lagrange equation concerning 𝑚𝑊, 𝑟𝐿𝑤 , 𝑟𝑅𝑤 , 𝑚𝐵,  𝑟𝐿𝐵 ,  𝑟𝑅𝐵 , 𝜉𝑙𝑖, 𝜉
∗
𝑙𝑖
, we obtain: 

𝑚𝑊 =∑(𝛼1𝑖 − 𝛼
∗
1𝑖)

𝑁

𝑖=1

𝑥𝑖, 𝑟𝐿𝑤 =∑[(𝛼1𝑖 − 𝛼
∗
1𝑖) − (𝛼2𝑖 − 𝛼

∗
2𝑖)]

𝑁

𝑖=1

𝑥𝑖   

𝑟𝑅𝑤 =∑[(𝛼3𝑖 − 𝛼
∗
3𝑖) − (𝛼1𝑖 − 𝛼

∗
1𝑖)]

𝑁

𝑖=1

𝑥𝑖                            (11) 

Such that: 𝛼𝑙𝑖 , 𝛼
∗
𝑙𝑖 , 𝑙 = 1,… ,3, 𝑎𝑛𝑑 𝑖 = 1,… ,𝑁 represents the not negative Lagrange 

multipliers. The two radius 𝑟𝐿𝑤 , 𝑎𝑛𝑑 𝑟𝑅𝑤must be always defined as positives, 𝑟𝐿𝑤 ≥

0, 𝑎𝑛𝑑 𝑟𝑅𝑤 ≥ 0. 

We obtain the corresponding dual optimization problem as follows:  

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝛼𝑙𝑖 ,𝛼

∗
𝑙𝑖 ≥0

{
∑(𝛼𝑙𝑖 − 𝛼

∗
𝑙𝑖) = 0

𝑁

𝑖=1

, 𝑙 = 1,… ,3

𝛼𝑙𝑖 , 𝛼
∗
𝑙𝑖 ∈ [0. 𝐶], 𝑙 = 1,2,3, 𝑖 = 1,… ,𝑁

                   (15) 

We can write our fuzzy model as follows: 

𝑓(𝑥) =  (〈𝑚𝑊, 𝑥〉, 〈𝑟𝐿𝑤 , 𝑥〉, 〈𝑟𝑅𝑤 , 𝑥〉) + 𝐵                          (16) 

We need to find now, 𝑚𝐵, 𝑟𝐿𝐵 , 𝑎𝑛𝑑 𝑟𝑅𝐵. 

With the use of Karush-Kuhn-Tucker (KKT) conditions, we can calculate 𝑚𝐵 as 

follows:  
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{
 𝑚𝐵 = 𝑚𝑌𝑖

− 〈𝑊,𝑚𝑥𝑖
〉 − 𝜀,    𝑊ℎ𝑖𝑙𝑒  𝛼1𝑖 ∈ (0, 𝐶)

𝑚𝐵 = 𝑚𝑌𝑖
− 〈𝑊,𝑚𝑥𝑖

〉 + 𝜀,    𝑊ℎ𝑖𝑙𝑒  𝛼∗1𝑖 ∈ (0, 𝐶)
                     (18) 

To find the value of 𝑟𝐿𝐵 , 𝑎𝑛𝑑 𝑟𝑅𝐵, we need to solve the optimization problem given 

below Min
𝑟𝐿𝐵 , 𝑟𝑅𝐵  ≥0

 of: 

{
 
 

 
 ∑|𝑚𝑌𝑖

− 𝑟𝐿𝑌𝑖 − 〈𝑚𝑊 − 𝑟𝐿𝑊 , 𝑥𝑖〉 − 𝑚𝐵 + 𝑟𝐿𝐵| 𝜀

𝑁

𝑖=1

+∑|𝑚𝑌𝑖
+ 𝑟𝑅𝑌𝑖 − 〈𝑚𝑊 + 𝑟𝑅𝑊 , 𝑥𝑖〉 − 𝑚𝐵 + 𝑟𝑅𝐵| 𝜀

𝑁

𝑖=1

                 (19) 

Such that the loss function 𝜖 − 𝑖𝑛𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 given below: 

𝐿𝜖(𝑦) = {
0    𝑊ℎ𝑖𝑙𝑒 |𝑓(𝑥) − 𝑦| < 𝜀
|𝑓(𝑥) − 𝑦| − 𝜀     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                (20) 

The combination of exploration and exploitation properties of two variants of PSO, 

local and global, [25], gave rise to the Unified Particle Swarm Optimization technique 

(UPSO). The UPSO technique is mainly based on the inertial version of PSO, although 

it can be defined directly for the constriction factor version. Let 𝐿𝑖(𝑡 + 1) 𝑎𝑛𝑑 𝐺𝑖(𝑡 +

1) denote the speed adaptation of the 𝑖𝑡ℎ vehicle, for the local and global variant [26]. 

𝐺𝑖(𝑡 + 1) = 𝑉𝑖(𝑡) + 𝑐1𝑟1(𝑃𝑖(𝑡) − 𝑋𝑖(𝑡)) + 𝑐2𝑟2 (𝑃𝑔(𝑡) − 𝑋𝑖(𝑡))         (21) 

𝐿𝑖(𝑡 + 1) = 𝑉𝑖(𝑡) + 𝑐1𝑟′1(𝑃𝑖(𝑡) − 𝑋𝑖(𝑡)) + 𝑐2𝑟′2 (𝑃𝑔𝑖(𝑡) − 𝑋𝑖(𝑡))       (22) 

where 𝑡 denotes the current iteration, 𝑔𝑖 represents the index of the most suitable 

vehicles which are in the vicinity of 𝑋𝑖, while 𝑔 represents the index of the most suitable 

vehicle of the swarm. By combining equations 21 and 22 into a single equation, we 

then obtain the main mechanism of UPSO. 

𝑉𝑖(𝑡 + 1) = (1 − 𝑢). 𝐺𝑖(𝑡 + 1) + 𝑢. 𝐿𝑖(𝑡 + 1)                          (23) 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑉𝑖(𝑡 + 1)                                        (24) 

where the parameter 𝑢 is the unification factor. This factor balances the influence of the 

global and local search directions in the final algorithm, the case of the global PSO 

standard is obtained by putting 𝑢 = 1 in equation 23, 𝑢 = 0 corresponds to the case of 

the local PSO standard. All the values of 𝑢 ∈ (0,1), corresponding to composing the 

variants of PSO which combine the exploration and exploitation characteristics of its 

local and global variant. 

4.2 Hyper-parameters selection in VANET environment by the PSO and UPSO 

standards 

The hyper-parameters of the FSVRNET model (𝐶 𝑎𝑛𝑑 𝜎) can be optimized by using 

the UPSO and PSO algorithms. Consequently, each vehicle represents a potential 

solution with the resolution of the problem of selecting hyper-parameters. The hyper-

parameters are evaluated using a fitness function, which is determined concerning the 

considered optimization problem. The goal of FSVRNET's learning and testing process 
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is to further develop the generalization performance of the fuzzy regression model [27] 

[28]. We can then define the fitness function as follows: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
1

𝜐
∑ √

1

𝑚
∑(𝑚𝑓(𝑥𝑖𝑗)

−𝑚𝑌𝑖𝑗
)
2

𝑚

𝑗=1

𝜐

𝑖=1

                          (25) 

Where, 𝜐 is the number of folds for the cross-validation of 𝜐 − 𝑓𝑜𝑙𝑑𝑠, and 𝑚 the 

number of each validation subset, 𝑚𝑌𝑖𝑗
 is the center of the fuzzy output value observed, 

𝑚𝑓(𝑥𝑖𝑗)
 is the estimated fuzzy model midpoint of all learning data. 

The objective is to select the optimal hyperparameters. Also to optimize the physical 

form of the vehicle, therefore, that it should be reserved during the optimization 

process. 

5. Analysis of experience 

To validate the feasibility and effectiveness of FSVRNET on the identification quality 

in a VANET environment, an experimental study is conducted through a multi-entry 

system. In this application, the dataset, composed of 100 samples. The size of the model 

is assumed to be known.  

 

 

Figure 1: Multivariable model obtained by UPSO-FSVRNET (Model 1) 

Generally, and as assumed in most identification methods, the model obtained is 

validated on a test set. If the identification data very small amount, it is possible to use 

statistical validation tools. First, a linear system of the form: 

�̂� = 𝑓(𝑥) = 𝐵 ⊕∑𝑊𝑖. (𝑥𝑖 − 𝑠ℎ𝑖𝑓𝑡𝑖)

𝑁

𝑖=1

                               (26) 

From the used data, it is clear that all the inputs are between 0 and 1. Therefore, first of 

all, the selected offsets are defined by 𝑠ℎ𝑖𝑓𝑡𝑖 = 0, 𝑖 = {1, 2, 3, 5}, 𝑎𝑛𝑑 𝑠ℎ𝑖𝑓𝑡4 = 1. 

We now apply our proposed PSO/UPSO-FSVRNET approach to this dataset. First, we 

consider a fuzzy model of the form 40 (Model 1) and we use the RBF (Radial Basis 
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Function) kernel to map the input data into the characteristic space. The model obtained 

(Model 1) is illustrated in Figures .2. 

 

Figure 2: Model obtained by the linear approach (Model 1) 

We pass to the task of validating this model obtained using the test data (cf. Annex-1). 

To do this, we must calculate the measure 𝑀𝐴𝑃𝐸, and 𝑀𝐴𝑃𝐸𝑗  (these equations are for 

triangular fuzzy models) as follows: 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑|

𝑚𝑓(𝑥𝑖)
−𝑚𝑦𝑖

𝑚𝑦𝑖

| × 100

𝑁

𝑖=1

                             (27) 

With 𝑚𝑦𝑖
  is the midpoint of the true fuzzy output, 𝑚𝑓(𝑥𝑖)

 is the midpoint of the 

estimated fuzzy regression model. 

𝑀𝐴𝑃𝐸𝑗 = |
𝑚𝑓(𝑥𝑗)

−𝑚𝑦𝑗

𝑚𝑦𝑗

| × 100                                  (28) 

We have gathered the 𝑀𝐴𝑃𝐸𝑗  measurement for each test data, and also the 𝑀𝐴𝑃𝐸 error 

of all the test data, and for all identification data. For trapezoidal models, the 𝑀𝐴𝑃𝐸 

measure can be calculated from the follows equation: 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑|

𝑚𝑆𝑓(𝑥𝑖)
−𝑚𝑦𝑖

𝑚𝑦𝑖

| × 100

𝑁

𝑖=1

                          (29) 

With 𝑚𝑆𝑓(𝑥𝑖)
 is the modal value of the support of the estimated fuzzy output 

(prediction), and 𝑚𝑦𝑖
 is the midpoint of the observed output. The 𝑀𝐴𝑃𝐸𝑗  is calculated 

as follows: 

𝑀𝐴𝑃𝐸𝑗 = |
𝑚𝑆𝑓(𝑥𝑖)

−𝑚𝑦𝑗

𝑚𝑦𝑗

| × 100                              (30) 
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Table 1: Test on validation data for model-1 by the linear technic. 

𝒋 𝒚 𝒎𝒇(𝒙) 𝑴𝑨𝑷𝑬𝒋 (%) �̂� 

1 1.3915 1.5300 9.9503 [0.2675, 1.8734] 

5 

26 

1.1886 

1.7484 

-0.0340 

2.2275 

102.8584 

27.4029 

[−1.9941, 0.4201] 

[1.6781, 2.9302] 

32 2.3165 2.0436 11.7818 [0.5660, 2.9745] 

34 5.1463 5.6391 9.5763 [3.8384, 5.7367] 

41 2.2748 2.7977 22.9880 [1.4329, 3.4925] 

67 1.4327 0.4190 70.7555 [-1.3283, 1.3375] 

93 2.7117 2.4326 10.2926 [1.5477, 3.5363] 

𝑀𝐴𝑃𝐸 (test data) 35.0011  

𝑀𝐴𝑃𝐸 (identification 

data) 

14.3083 

 

 

 

Figure 3: Multi-entry model obtained by UPSO-FSVRNET (Model 2). 

Practically, the choice of structure is made by empirical considerations, which consist 

in trying several structures and accepting only the one that gives the best performance. 

Thus, it is possible to incorporate a technique for identifying the structure of the model 

before using our method. 

The model to be identified is therefore of the form: 

�̂� = 𝑓(𝑥) = 𝐵 +𝑊1. (𝑥1. 𝑥2) ⊕𝑊2.𝑥3⊕𝑊3.(𝑥3. 𝑥4) ⊕𝑊4.(𝑥5)
2          (31) 

The obtained models using the proposed method is shown in Figures 6. 

6. Conclusion 

In this paper, we have presented two types of methods applied in the identification of a 

fuzzy regressive model in a VANET environment. One is to minimize a linear criterion 
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or quadratic depending on the observed data and/or the measured outputs, this is the 

conventional approach, while the other amounts to minimizing a criterion completely 

independent of the latter, it is the fuzzy support vector regression (FSVRNET). It should 

also be noted that if one wishes to obtain a possibility model, which respects the 

complete inclusion of the data in the predicted output, the minimization must be done 

under constraints in all cases, and as the complexity of a problem in linear optimization 

is less important, it makes more sense to use the proposed linear approach. Also, in this 

work, we proposed a new contribution of the identification of fuzzy regressive models 

based on the method of FSVRNET with unsymmetrical triangular fuzzy numbers and 

unified particle swarm optimization (UPSO), this new method was tested in two 

illustrative monovariable examples, then applied it to a noisy multi-input dataset. 

Our evaluation was limited to a study of optimal identification performance and hyper-

parameters for the two multi-input models studied. However, we did not evaluate the 

real-time performance of the entire system. Several perspectives are possible, such as 

the proposed approach being developed with the assumption that the proposed 

identification model uses all the necessary information from the different entities of the 

VANET network. The definition of the view of the network to be shared and how it 

will be shared, as well as the operating mode for exchanging data between the different 

actors of this system, can constitute a first architectural perspective. On the other hand, 

the definition of the East-West interface (defining the messages exchanged between the 

entities of the VANET network) taking into account the mobility constraints of the 

nodes represent a second architectural perspective to be explored. Taking a dynamic 

approach to smart identification holds great promise. 
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